Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats

Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2013-11, Vol.38 (12), p.2401-2408
Hauptverfasser: FOX, Steven V, GOTTER, Anthony L, LIHANG YAO, BOWLBY, Mark R, KUDUK, Scott D, COLEMAN, Paul J, HARGREAVES, Richard, WINROW, Christopher J, RENGER, John J, TYE, Spencer J, GARSON, Susan L, SAVITZ, Alan T, USLANER, Jason M, BRUNNER, Joseph I, TANNENBAUM, Pamela L, MCDONALD, Terrence P, HODGSON, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2408
container_issue 12
container_start_page 2401
container_title Neuropsychopharmacology (New York, N.Y.)
container_volume 38
creator FOX, Steven V
GOTTER, Anthony L
LIHANG YAO
BOWLBY, Mark R
KUDUK, Scott D
COLEMAN, Paul J
HARGREAVES, Richard
WINROW, Christopher J
RENGER, John J
TYE, Spencer J
GARSON, Susan L
SAVITZ, Alan T
USLANER, Jason M
BRUNNER, Joseph I
TANNENBAUM, Pamela L
MCDONALD, Terrence P
HODGSON, Robert
description Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague-Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep.
doi_str_mv 10.1038/npp.2013.139
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3799059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099752061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-b648451edd66d01aabfff604af1954e8267bb6bd17f78fd29dd40e8964fffdbe3</originalsourceid><addsrcrecordid>eNpdkVtrFDEYhgdR7Fq981oCInjhbnOaQ26Etd22QqVolRZvQmbyZTdtNhmTmWL9O_5Rs-1aD1chyfM9yctbFM8JnhHMmj3f9zOKCZsRJh4UE1JzPK0Yv3hYTHAj2JQwdrFTPEnpEmNS1lXzuNihrKaUcjopfn4clR_soAZ7DWjhoBtiAN9Bv1IuLKPqVzfo3A4r69GZA-j3ztUVoLM8AAkdWGMgQhbcbo_m7-Zz9CHo0akhxIQW6UfobeeCB6S8Rl-D662GNTqMYY0ORuXQaYTv2f0J8pN5Bs39oJbB2zQktDlXQ3paPDLKJXi2XXeLL4eLz_vH05PTo_f785Npx0ompm3FG14S0LqqNCZKtcaYCnNliCg5NLSq27ZqNalN3RhNhdYcQyMqnjndAtst3t55-7Fdg-5yrqic7KNdq3gjg7Ly3xtvV3IZriWrhcClyILXW0EM30ZIg1zb1IFzykMYkyScM055iXFGX_6HXoYx-hxvQ1EiOBUb4Zs7qoshpQjm_jMEy037MrcvN-3L3H7GX_wd4B7-XXcGXm0BlTrlTFS-s-kPVzdVwzFnvwCFs7zn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442194299</pqid></control><display><type>article</type><title>Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>FOX, Steven V ; GOTTER, Anthony L ; LIHANG YAO ; BOWLBY, Mark R ; KUDUK, Scott D ; COLEMAN, Paul J ; HARGREAVES, Richard ; WINROW, Christopher J ; RENGER, John J ; TYE, Spencer J ; GARSON, Susan L ; SAVITZ, Alan T ; USLANER, Jason M ; BRUNNER, Joseph I ; TANNENBAUM, Pamela L ; MCDONALD, Terrence P ; HODGSON, Robert</creator><creatorcontrib>FOX, Steven V ; GOTTER, Anthony L ; LIHANG YAO ; BOWLBY, Mark R ; KUDUK, Scott D ; COLEMAN, Paul J ; HARGREAVES, Richard ; WINROW, Christopher J ; RENGER, John J ; TYE, Spencer J ; GARSON, Susan L ; SAVITZ, Alan T ; USLANER, Jason M ; BRUNNER, Joseph I ; TANNENBAUM, Pamela L ; MCDONALD, Terrence P ; HODGSON, Robert</creatorcontrib><description>Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague-Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/npp.2013.139</identifier><identifier>PMID: 23722242</identifier><identifier>CODEN: NEROEW</identifier><language>eng</language><publisher>Basingstoke: Nature Publishing Group</publisher><subject><![CDATA[Animals ; Azabicyclo Compounds - administration & dosage ; Azabicyclo Compounds - pharmacology ; Biological and medical sciences ; Brain - drug effects ; Brain - physiology ; Electroencephalography ; Eszopiclone ; Eye movements ; Foxes ; GABA-A Receptor Agonists - administration & dosage ; GABA-A Receptor Agonists - pharmacology ; Insomnia ; Laboratory animals ; Male ; Medical sciences ; Nervous system ; Neurosciences ; Orexin Receptor Antagonists ; Original ; Piperazines - administration & dosage ; Piperazines - pharmacology ; Piperidines - administration & dosage ; Piperidines - pharmacology ; Pyridines - administration & dosage ; Pyridines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Sleep ; Sleep Stages - drug effects ; Sleep Stages - physiology ; Triazoles - administration & dosage ; Triazoles - pharmacology]]></subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2013-11, Vol.38 (12), p.2401-2408</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Nov 2013</rights><rights>Copyright © 2013 American College of Neuropsychopharmacology 2013 American College of Neuropsychopharmacology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-b648451edd66d01aabfff604af1954e8267bb6bd17f78fd29dd40e8964fffdbe3</citedby><cites>FETCH-LOGICAL-c3539-b648451edd66d01aabfff604af1954e8267bb6bd17f78fd29dd40e8964fffdbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799059/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799059/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27868404$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23722242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FOX, Steven V</creatorcontrib><creatorcontrib>GOTTER, Anthony L</creatorcontrib><creatorcontrib>LIHANG YAO</creatorcontrib><creatorcontrib>BOWLBY, Mark R</creatorcontrib><creatorcontrib>KUDUK, Scott D</creatorcontrib><creatorcontrib>COLEMAN, Paul J</creatorcontrib><creatorcontrib>HARGREAVES, Richard</creatorcontrib><creatorcontrib>WINROW, Christopher J</creatorcontrib><creatorcontrib>RENGER, John J</creatorcontrib><creatorcontrib>TYE, Spencer J</creatorcontrib><creatorcontrib>GARSON, Susan L</creatorcontrib><creatorcontrib>SAVITZ, Alan T</creatorcontrib><creatorcontrib>USLANER, Jason M</creatorcontrib><creatorcontrib>BRUNNER, Joseph I</creatorcontrib><creatorcontrib>TANNENBAUM, Pamela L</creatorcontrib><creatorcontrib>MCDONALD, Terrence P</creatorcontrib><creatorcontrib>HODGSON, Robert</creatorcontrib><title>Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague-Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep.</description><subject>Animals</subject><subject>Azabicyclo Compounds - administration &amp; dosage</subject><subject>Azabicyclo Compounds - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Brain - drug effects</subject><subject>Brain - physiology</subject><subject>Electroencephalography</subject><subject>Eszopiclone</subject><subject>Eye movements</subject><subject>Foxes</subject><subject>GABA-A Receptor Agonists - administration &amp; dosage</subject><subject>GABA-A Receptor Agonists - pharmacology</subject><subject>Insomnia</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Neurosciences</subject><subject>Orexin Receptor Antagonists</subject><subject>Original</subject><subject>Piperazines - administration &amp; dosage</subject><subject>Piperazines - pharmacology</subject><subject>Piperidines - administration &amp; dosage</subject><subject>Piperidines - pharmacology</subject><subject>Pyridines - administration &amp; dosage</subject><subject>Pyridines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sleep</subject><subject>Sleep Stages - drug effects</subject><subject>Sleep Stages - physiology</subject><subject>Triazoles - administration &amp; dosage</subject><subject>Triazoles - pharmacology</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkVtrFDEYhgdR7Fq981oCInjhbnOaQ26Etd22QqVolRZvQmbyZTdtNhmTmWL9O_5Rs-1aD1chyfM9yctbFM8JnhHMmj3f9zOKCZsRJh4UE1JzPK0Yv3hYTHAj2JQwdrFTPEnpEmNS1lXzuNihrKaUcjopfn4clR_soAZ7DWjhoBtiAN9Bv1IuLKPqVzfo3A4r69GZA-j3ztUVoLM8AAkdWGMgQhbcbo_m7-Zz9CHo0akhxIQW6UfobeeCB6S8Rl-D662GNTqMYY0ORuXQaYTv2f0J8pN5Bs39oJbB2zQktDlXQ3paPDLKJXi2XXeLL4eLz_vH05PTo_f785Npx0ompm3FG14S0LqqNCZKtcaYCnNliCg5NLSq27ZqNalN3RhNhdYcQyMqnjndAtst3t55-7Fdg-5yrqic7KNdq3gjg7Ly3xtvV3IZriWrhcClyILXW0EM30ZIg1zb1IFzykMYkyScM055iXFGX_6HXoYx-hxvQ1EiOBUb4Zs7qoshpQjm_jMEy037MrcvN-3L3H7GX_wd4B7-XXcGXm0BlTrlTFS-s-kPVzdVwzFnvwCFs7zn</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>FOX, Steven V</creator><creator>GOTTER, Anthony L</creator><creator>LIHANG YAO</creator><creator>BOWLBY, Mark R</creator><creator>KUDUK, Scott D</creator><creator>COLEMAN, Paul J</creator><creator>HARGREAVES, Richard</creator><creator>WINROW, Christopher J</creator><creator>RENGER, John J</creator><creator>TYE, Spencer J</creator><creator>GARSON, Susan L</creator><creator>SAVITZ, Alan T</creator><creator>USLANER, Jason M</creator><creator>BRUNNER, Joseph I</creator><creator>TANNENBAUM, Pamela L</creator><creator>MCDONALD, Terrence P</creator><creator>HODGSON, Robert</creator><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201311</creationdate><title>Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats</title><author>FOX, Steven V ; GOTTER, Anthony L ; LIHANG YAO ; BOWLBY, Mark R ; KUDUK, Scott D ; COLEMAN, Paul J ; HARGREAVES, Richard ; WINROW, Christopher J ; RENGER, John J ; TYE, Spencer J ; GARSON, Susan L ; SAVITZ, Alan T ; USLANER, Jason M ; BRUNNER, Joseph I ; TANNENBAUM, Pamela L ; MCDONALD, Terrence P ; HODGSON, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-b648451edd66d01aabfff604af1954e8267bb6bd17f78fd29dd40e8964fffdbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Azabicyclo Compounds - administration &amp; dosage</topic><topic>Azabicyclo Compounds - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Brain - drug effects</topic><topic>Brain - physiology</topic><topic>Electroencephalography</topic><topic>Eszopiclone</topic><topic>Eye movements</topic><topic>Foxes</topic><topic>GABA-A Receptor Agonists - administration &amp; dosage</topic><topic>GABA-A Receptor Agonists - pharmacology</topic><topic>Insomnia</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Neurosciences</topic><topic>Orexin Receptor Antagonists</topic><topic>Original</topic><topic>Piperazines - administration &amp; dosage</topic><topic>Piperazines - pharmacology</topic><topic>Piperidines - administration &amp; dosage</topic><topic>Piperidines - pharmacology</topic><topic>Pyridines - administration &amp; dosage</topic><topic>Pyridines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sleep</topic><topic>Sleep Stages - drug effects</topic><topic>Sleep Stages - physiology</topic><topic>Triazoles - administration &amp; dosage</topic><topic>Triazoles - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FOX, Steven V</creatorcontrib><creatorcontrib>GOTTER, Anthony L</creatorcontrib><creatorcontrib>LIHANG YAO</creatorcontrib><creatorcontrib>BOWLBY, Mark R</creatorcontrib><creatorcontrib>KUDUK, Scott D</creatorcontrib><creatorcontrib>COLEMAN, Paul J</creatorcontrib><creatorcontrib>HARGREAVES, Richard</creatorcontrib><creatorcontrib>WINROW, Christopher J</creatorcontrib><creatorcontrib>RENGER, John J</creatorcontrib><creatorcontrib>TYE, Spencer J</creatorcontrib><creatorcontrib>GARSON, Susan L</creatorcontrib><creatorcontrib>SAVITZ, Alan T</creatorcontrib><creatorcontrib>USLANER, Jason M</creatorcontrib><creatorcontrib>BRUNNER, Joseph I</creatorcontrib><creatorcontrib>TANNENBAUM, Pamela L</creatorcontrib><creatorcontrib>MCDONALD, Terrence P</creatorcontrib><creatorcontrib>HODGSON, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FOX, Steven V</au><au>GOTTER, Anthony L</au><au>LIHANG YAO</au><au>BOWLBY, Mark R</au><au>KUDUK, Scott D</au><au>COLEMAN, Paul J</au><au>HARGREAVES, Richard</au><au>WINROW, Christopher J</au><au>RENGER, John J</au><au>TYE, Spencer J</au><au>GARSON, Susan L</au><au>SAVITZ, Alan T</au><au>USLANER, Jason M</au><au>BRUNNER, Joseph I</au><au>TANNENBAUM, Pamela L</au><au>MCDONALD, Terrence P</au><au>HODGSON, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2013-11</date><risdate>2013</risdate><volume>38</volume><issue>12</issue><spage>2401</spage><epage>2408</epage><pages>2401-2408</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><coden>NEROEW</coden><abstract>Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague-Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep.</abstract><cop>Basingstoke</cop><pub>Nature Publishing Group</pub><pmid>23722242</pmid><doi>10.1038/npp.2013.139</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology (New York, N.Y.), 2013-11, Vol.38 (12), p.2401-2408
issn 0893-133X
1740-634X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3799059
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Animals
Azabicyclo Compounds - administration & dosage
Azabicyclo Compounds - pharmacology
Biological and medical sciences
Brain - drug effects
Brain - physiology
Electroencephalography
Eszopiclone
Eye movements
Foxes
GABA-A Receptor Agonists - administration & dosage
GABA-A Receptor Agonists - pharmacology
Insomnia
Laboratory animals
Male
Medical sciences
Nervous system
Neurosciences
Orexin Receptor Antagonists
Original
Piperazines - administration & dosage
Piperazines - pharmacology
Piperidines - administration & dosage
Piperidines - pharmacology
Pyridines - administration & dosage
Pyridines - pharmacology
Rats
Rats, Sprague-Dawley
Sleep
Sleep Stages - drug effects
Sleep Stages - physiology
Triazoles - administration & dosage
Triazoles - pharmacology
title Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Electroencephalography%20Within%20Sleep/Wake%20States%20Differentiates%20GABAA%20Modulators%20Eszopiclone%20and%20Zolpidem%20From%20Dual%20Orexin%20Receptor%20Antagonists%20in%20Rats&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=FOX,%20Steven%20V&rft.date=2013-11&rft.volume=38&rft.issue=12&rft.spage=2401&rft.epage=2408&rft.pages=2401-2408&rft.issn=0893-133X&rft.eissn=1740-634X&rft.coden=NEROEW&rft_id=info:doi/10.1038/npp.2013.139&rft_dat=%3Cproquest_pubme%3E3099752061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442194299&rft_id=info:pmid/23722242&rfr_iscdi=true