Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits

MAT (methionine adenosyltransferase) utilizes L-methionine and ATP to form SAM (S-adenosylmethionine), the principal methyl donor in biological methylation. Mammals encode a liver-specific isoenzyme, MAT1A, that is genetically linked with an inborn metabolic disorder of hypermethioninaemia, as well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2013-05, Vol.452 (1), p.27-36
Hauptverfasser: Shafqat, Naeem, Muniz, Joao R C, Pilka, Ewa S, Papagrigoriou, Evangelos, von Delft, Frank, Oppermann, Udo, Yue, Wyatt W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 27
container_title Biochemical journal
container_volume 452
creator Shafqat, Naeem
Muniz, Joao R C
Pilka, Ewa S
Papagrigoriou, Evangelos
von Delft, Frank
Oppermann, Udo
Yue, Wyatt W
description MAT (methionine adenosyltransferase) utilizes L-methionine and ATP to form SAM (S-adenosylmethionine), the principal methyl donor in biological methylation. Mammals encode a liver-specific isoenzyme, MAT1A, that is genetically linked with an inborn metabolic disorder of hypermethioninaemia, as well as a ubiquitously expressed isoenzyme, MAT2A, whose enzymatic activity is regulated by an associated subunit MAT2B. To understand the molecular mechanism of MAT functions and interactions, we have crystallized the ligand-bound complexes of human MAT1A, MAT2A and MAT2B. The structures of MAT1A and MAT2A in binary complexes with their product SAM allow for a comparison with the Escherichia coli and rat structures. This facilitates the understanding of the different substrate or product conformations, mediated by the neighbouring gating loop, which can be accommodated by the compact active site during catalysis. The structure of MAT2B reveals an SDR (short-chain dehydrogenase/reductase) core with specificity for the NADP/H cofactor, and harbours the SDR catalytic triad (YxxxKS). Extended from the MAT2B core is a second domain with homology with an SDR sub-family that binds nucleotide-sugar substrates, although the equivalent region in MAT2B presents a more open and extended surface which may endow a different ligand/protein-binding capability. Together, the results of the present study provide a framework to assign structural features to the functional and catalytic properties of the human MAT proteins, and facilitate future studies to probe new catalytic and binding functions.
doi_str_mv 10.1042/BJ20121580
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3793261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1346583250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-6fa7f02b5581372d8de90769efae59ab6f0145cd6d0ec3acc1df8985de7379d53</originalsourceid><addsrcrecordid>eNqNkctu1jAQhS0Eon8LGx4AeYmQArYT57JBohWFVpVYAOvIscd_jBK7eGykvAmPi-mNdtfVjGa-czSjQ8grzt5x1oj3x-eCccFlz56QHW86VvWd6J-SHRNtU7VM8ANyiPiTMd6whj0nB6JuhJSc78ifM49uPyfqfAr0W6UM-IDbskKaXfDOA51cGfg0AzqkNoaVlp7quGFSC8UUs045AtJgrzZzXpWn9wxuPVNUHi1EhUWuinhLTlPlDY2wz4tKIW4U85S9S_iCPLNqQXh5U4_Ij9NP30--VBdfP5-dfLyodMN5qlqrOsvEJGXP606Y3sDAunYAq0AOampteVpq0xoGulZac2P7oZcGurobjKyPyIdr38s8rWA0-HLmMl5Gt6q4jUG58eHGu3nch99jkdei5cXgzY1BDL8yYBpXhxqWRXkIGUfetH1hH4XWTSv7WkhW0LfXqI4BMYK9u4iz8V_q4__UC_z6_g936G3M9V9dDK2v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346583250</pqid></control><display><type>article</type><title>Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shafqat, Naeem ; Muniz, Joao R C ; Pilka, Ewa S ; Papagrigoriou, Evangelos ; von Delft, Frank ; Oppermann, Udo ; Yue, Wyatt W</creator><creatorcontrib>Shafqat, Naeem ; Muniz, Joao R C ; Pilka, Ewa S ; Papagrigoriou, Evangelos ; von Delft, Frank ; Oppermann, Udo ; Yue, Wyatt W</creatorcontrib><description>MAT (methionine adenosyltransferase) utilizes L-methionine and ATP to form SAM (S-adenosylmethionine), the principal methyl donor in biological methylation. Mammals encode a liver-specific isoenzyme, MAT1A, that is genetically linked with an inborn metabolic disorder of hypermethioninaemia, as well as a ubiquitously expressed isoenzyme, MAT2A, whose enzymatic activity is regulated by an associated subunit MAT2B. To understand the molecular mechanism of MAT functions and interactions, we have crystallized the ligand-bound complexes of human MAT1A, MAT2A and MAT2B. The structures of MAT1A and MAT2A in binary complexes with their product SAM allow for a comparison with the Escherichia coli and rat structures. This facilitates the understanding of the different substrate or product conformations, mediated by the neighbouring gating loop, which can be accommodated by the compact active site during catalysis. The structure of MAT2B reveals an SDR (short-chain dehydrogenase/reductase) core with specificity for the NADP/H cofactor, and harbours the SDR catalytic triad (YxxxKS). Extended from the MAT2B core is a second domain with homology with an SDR sub-family that binds nucleotide-sugar substrates, although the equivalent region in MAT2B presents a more open and extended surface which may endow a different ligand/protein-binding capability. Together, the results of the present study provide a framework to assign structural features to the functional and catalytic properties of the human MAT proteins, and facilitate future studies to probe new catalytic and binding functions.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BJ20121580</identifier><identifier>PMID: 23425511</identifier><language>eng</language><publisher>England: Portland Press Ltd</publisher><subject>Animals ; Catalytic Domain - physiology ; Crystallization - methods ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - physiology ; Humans ; Isoenzymes - chemistry ; Isoenzymes - genetics ; Isoenzymes - physiology ; Liver - enzymology ; Methionine Adenosyltransferase - chemistry ; Methionine Adenosyltransferase - genetics ; Methionine Adenosyltransferase - metabolism ; Methionine Adenosyltransferase - physiology ; Protein Interaction Mapping - methods ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - physiology ; Rats ; S-Adenosylmethionine - biosynthesis ; S-Adenosylmethionine - chemistry ; Substrate Specificity - physiology</subject><ispartof>Biochemical journal, 2013-05, Vol.452 (1), p.27-36</ispartof><rights>2013 The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY)(http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-6fa7f02b5581372d8de90769efae59ab6f0145cd6d0ec3acc1df8985de7379d53</citedby><cites>FETCH-LOGICAL-c411t-6fa7f02b5581372d8de90769efae59ab6f0145cd6d0ec3acc1df8985de7379d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793261/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793261/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23425511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shafqat, Naeem</creatorcontrib><creatorcontrib>Muniz, Joao R C</creatorcontrib><creatorcontrib>Pilka, Ewa S</creatorcontrib><creatorcontrib>Papagrigoriou, Evangelos</creatorcontrib><creatorcontrib>von Delft, Frank</creatorcontrib><creatorcontrib>Oppermann, Udo</creatorcontrib><creatorcontrib>Yue, Wyatt W</creatorcontrib><title>Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>MAT (methionine adenosyltransferase) utilizes L-methionine and ATP to form SAM (S-adenosylmethionine), the principal methyl donor in biological methylation. Mammals encode a liver-specific isoenzyme, MAT1A, that is genetically linked with an inborn metabolic disorder of hypermethioninaemia, as well as a ubiquitously expressed isoenzyme, MAT2A, whose enzymatic activity is regulated by an associated subunit MAT2B. To understand the molecular mechanism of MAT functions and interactions, we have crystallized the ligand-bound complexes of human MAT1A, MAT2A and MAT2B. The structures of MAT1A and MAT2A in binary complexes with their product SAM allow for a comparison with the Escherichia coli and rat structures. This facilitates the understanding of the different substrate or product conformations, mediated by the neighbouring gating loop, which can be accommodated by the compact active site during catalysis. The structure of MAT2B reveals an SDR (short-chain dehydrogenase/reductase) core with specificity for the NADP/H cofactor, and harbours the SDR catalytic triad (YxxxKS). Extended from the MAT2B core is a second domain with homology with an SDR sub-family that binds nucleotide-sugar substrates, although the equivalent region in MAT2B presents a more open and extended surface which may endow a different ligand/protein-binding capability. Together, the results of the present study provide a framework to assign structural features to the functional and catalytic properties of the human MAT proteins, and facilitate future studies to probe new catalytic and binding functions.</description><subject>Animals</subject><subject>Catalytic Domain - physiology</subject><subject>Crystallization - methods</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - physiology</subject><subject>Humans</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - physiology</subject><subject>Liver - enzymology</subject><subject>Methionine Adenosyltransferase - chemistry</subject><subject>Methionine Adenosyltransferase - genetics</subject><subject>Methionine Adenosyltransferase - metabolism</subject><subject>Methionine Adenosyltransferase - physiology</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - physiology</subject><subject>Rats</subject><subject>S-Adenosylmethionine - biosynthesis</subject><subject>S-Adenosylmethionine - chemistry</subject><subject>Substrate Specificity - physiology</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1jAQhS0Eon8LGx4AeYmQArYT57JBohWFVpVYAOvIscd_jBK7eGykvAmPi-mNdtfVjGa-czSjQ8grzt5x1oj3x-eCccFlz56QHW86VvWd6J-SHRNtU7VM8ANyiPiTMd6whj0nB6JuhJSc78ifM49uPyfqfAr0W6UM-IDbskKaXfDOA51cGfg0AzqkNoaVlp7quGFSC8UUs045AtJgrzZzXpWn9wxuPVNUHi1EhUWuinhLTlPlDY2wz4tKIW4U85S9S_iCPLNqQXh5U4_Ij9NP30--VBdfP5-dfLyodMN5qlqrOsvEJGXP606Y3sDAunYAq0AOampteVpq0xoGulZac2P7oZcGurobjKyPyIdr38s8rWA0-HLmMl5Gt6q4jUG58eHGu3nch99jkdei5cXgzY1BDL8yYBpXhxqWRXkIGUfetH1hH4XWTSv7WkhW0LfXqI4BMYK9u4iz8V_q4__UC_z6_g936G3M9V9dDK2v</recordid><startdate>20130515</startdate><enddate>20130515</enddate><creator>Shafqat, Naeem</creator><creator>Muniz, Joao R C</creator><creator>Pilka, Ewa S</creator><creator>Papagrigoriou, Evangelos</creator><creator>von Delft, Frank</creator><creator>Oppermann, Udo</creator><creator>Yue, Wyatt W</creator><general>Portland Press Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20130515</creationdate><title>Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits</title><author>Shafqat, Naeem ; Muniz, Joao R C ; Pilka, Ewa S ; Papagrigoriou, Evangelos ; von Delft, Frank ; Oppermann, Udo ; Yue, Wyatt W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-6fa7f02b5581372d8de90769efae59ab6f0145cd6d0ec3acc1df8985de7379d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Catalytic Domain - physiology</topic><topic>Crystallization - methods</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - physiology</topic><topic>Humans</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - physiology</topic><topic>Liver - enzymology</topic><topic>Methionine Adenosyltransferase - chemistry</topic><topic>Methionine Adenosyltransferase - genetics</topic><topic>Methionine Adenosyltransferase - metabolism</topic><topic>Methionine Adenosyltransferase - physiology</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - physiology</topic><topic>Rats</topic><topic>S-Adenosylmethionine - biosynthesis</topic><topic>S-Adenosylmethionine - chemistry</topic><topic>Substrate Specificity - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafqat, Naeem</creatorcontrib><creatorcontrib>Muniz, Joao R C</creatorcontrib><creatorcontrib>Pilka, Ewa S</creatorcontrib><creatorcontrib>Papagrigoriou, Evangelos</creatorcontrib><creatorcontrib>von Delft, Frank</creatorcontrib><creatorcontrib>Oppermann, Udo</creatorcontrib><creatorcontrib>Yue, Wyatt W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafqat, Naeem</au><au>Muniz, Joao R C</au><au>Pilka, Ewa S</au><au>Papagrigoriou, Evangelos</au><au>von Delft, Frank</au><au>Oppermann, Udo</au><au>Yue, Wyatt W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2013-05-15</date><risdate>2013</risdate><volume>452</volume><issue>1</issue><spage>27</spage><epage>36</epage><pages>27-36</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>MAT (methionine adenosyltransferase) utilizes L-methionine and ATP to form SAM (S-adenosylmethionine), the principal methyl donor in biological methylation. Mammals encode a liver-specific isoenzyme, MAT1A, that is genetically linked with an inborn metabolic disorder of hypermethioninaemia, as well as a ubiquitously expressed isoenzyme, MAT2A, whose enzymatic activity is regulated by an associated subunit MAT2B. To understand the molecular mechanism of MAT functions and interactions, we have crystallized the ligand-bound complexes of human MAT1A, MAT2A and MAT2B. The structures of MAT1A and MAT2A in binary complexes with their product SAM allow for a comparison with the Escherichia coli and rat structures. This facilitates the understanding of the different substrate or product conformations, mediated by the neighbouring gating loop, which can be accommodated by the compact active site during catalysis. The structure of MAT2B reveals an SDR (short-chain dehydrogenase/reductase) core with specificity for the NADP/H cofactor, and harbours the SDR catalytic triad (YxxxKS). Extended from the MAT2B core is a second domain with homology with an SDR sub-family that binds nucleotide-sugar substrates, although the equivalent region in MAT2B presents a more open and extended surface which may endow a different ligand/protein-binding capability. Together, the results of the present study provide a framework to assign structural features to the functional and catalytic properties of the human MAT proteins, and facilitate future studies to probe new catalytic and binding functions.</abstract><cop>England</cop><pub>Portland Press Ltd</pub><pmid>23425511</pmid><doi>10.1042/BJ20121580</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2013-05, Vol.452 (1), p.27-36
issn 0264-6021
1470-8728
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3793261
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Catalytic Domain - physiology
Crystallization - methods
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - physiology
Humans
Isoenzymes - chemistry
Isoenzymes - genetics
Isoenzymes - physiology
Liver - enzymology
Methionine Adenosyltransferase - chemistry
Methionine Adenosyltransferase - genetics
Methionine Adenosyltransferase - metabolism
Methionine Adenosyltransferase - physiology
Protein Interaction Mapping - methods
Protein Subunits - chemistry
Protein Subunits - genetics
Protein Subunits - physiology
Rats
S-Adenosylmethionine - biosynthesis
S-Adenosylmethionine - chemistry
Substrate Specificity - physiology
title Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20S-adenosylmethionine%20biosynthesis%20from%20the%20crystal%20structures%20of%20the%20human%20methionine%20adenosyltransferase%20catalytic%20and%20regulatory%20subunits&rft.jtitle=Biochemical%20journal&rft.au=Shafqat,%20Naeem&rft.date=2013-05-15&rft.volume=452&rft.issue=1&rft.spage=27&rft.epage=36&rft.pages=27-36&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BJ20121580&rft_dat=%3Cproquest_pubme%3E1346583250%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346583250&rft_id=info:pmid/23425511&rfr_iscdi=true