Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering
Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material st...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2013-10, Vol.135 (10), p.101013-101018 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101018 |
---|---|
container_issue | 10 |
container_start_page | 101013 |
container_title | Journal of biomechanical engineering |
container_volume | 135 |
creator | Kang, Heesuk Hollister, Scott J La Marca, Frank Park, Paul Lin, Chia-Ying |
description | Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages. |
doi_str_mv | 10.1115/1.4025102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3792404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512324390</sourcerecordid><originalsourceid>FETCH-LOGICAL-a465t-35ef771ae04cfbee15d7238e56080cefb8f97737965c6adc688c18213c5f8e933</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhwBkJ-UgPKZ7YTpwLEmzZUilSkWjF0XKcSeoqiRc7QVregjfGyy4VnDj5MN98npmfkJfAzgFAvoVzwXIJLH9EViBzlalKwmOyYiBUxkoOJ-RZjPeMASjBnpKTnKuqBOAr8vOzD36J9IPzLfbBtKYZkNbL2JhAr6YZQ-PbHd0s0fmJrk2P9AKj6ydqppZuTBOcNfO-dhvd1P9uSZoZW3o5-MYMWe2tGeiN3_rB9zt6vZ3d6H4cer66-Y7WJmKgX9z-s6R4Tp50Zoj44viektvNx5v1p6y-vrxav68zIwo5Z1xiV5ZgkAnbNYgg2zKthbJgilnsGtVVZcnLqpC2MK0tlLKgcuBWdgorzk_Ju4N3uzQjthanOZhBb4MbTdhpb5z-tzK5O9377zo5c8FEErw5CoL_tmCc9eiixWEwE6aTapCQ81zwiv0fFTzFkebdo2cH1AYfY8DuYSJgep-2Bn1MO7Gv_17hgfwTbwJeHQATR9T3fglTOmnagFVS8l-zd7AR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437119770</pqid></control><display><type>article</type><title>Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Kang, Heesuk ; Hollister, Scott J ; La Marca, Frank ; Park, Paul ; Lin, Chia-Ying</creator><creatorcontrib>Kang, Heesuk ; Hollister, Scott J ; La Marca, Frank ; Park, Paul ; Lin, Chia-Ying</creatorcontrib><description>Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4025102</identifier><identifier>PMID: 23897113</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Animals ; Biocompatible Materials ; Finite Element Analysis ; Humans ; Lasers ; Lumbar Vertebrae - surgery ; Materials Testing ; Mechanical Phenomena ; Polyesters ; Porosity ; Research Papers ; Spinal Fusion - instrumentation ; Swine</subject><ispartof>Journal of biomechanical engineering, 2013-10, Vol.135 (10), p.101013-101018</ispartof><rights>Copyright © 2013 by ASME 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a465t-35ef771ae04cfbee15d7238e56080cefb8f97737965c6adc688c18213c5f8e933</citedby><cites>FETCH-LOGICAL-a465t-35ef771ae04cfbee15d7238e56080cefb8f97737965c6adc688c18213c5f8e933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,38520</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23897113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Heesuk</creatorcontrib><creatorcontrib>Hollister, Scott J</creatorcontrib><creatorcontrib>La Marca, Frank</creatorcontrib><creatorcontrib>Park, Paul</creatorcontrib><creatorcontrib>Lin, Chia-Ying</creatorcontrib><title>Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.</description><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Finite Element Analysis</subject><subject>Humans</subject><subject>Lasers</subject><subject>Lumbar Vertebrae - surgery</subject><subject>Materials Testing</subject><subject>Mechanical Phenomena</subject><subject>Polyesters</subject><subject>Porosity</subject><subject>Research Papers</subject><subject>Spinal Fusion - instrumentation</subject><subject>Swine</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EokvhwBkJ-UgPKZ7YTpwLEmzZUilSkWjF0XKcSeoqiRc7QVregjfGyy4VnDj5MN98npmfkJfAzgFAvoVzwXIJLH9EViBzlalKwmOyYiBUxkoOJ-RZjPeMASjBnpKTnKuqBOAr8vOzD36J9IPzLfbBtKYZkNbL2JhAr6YZQ-PbHd0s0fmJrk2P9AKj6ydqppZuTBOcNfO-dhvd1P9uSZoZW3o5-MYMWe2tGeiN3_rB9zt6vZ3d6H4cer66-Y7WJmKgX9z-s6R4Tp50Zoj44viektvNx5v1p6y-vrxav68zIwo5Z1xiV5ZgkAnbNYgg2zKthbJgilnsGtVVZcnLqpC2MK0tlLKgcuBWdgorzk_Ju4N3uzQjthanOZhBb4MbTdhpb5z-tzK5O9377zo5c8FEErw5CoL_tmCc9eiixWEwE6aTapCQ81zwiv0fFTzFkebdo2cH1AYfY8DuYSJgep-2Bn1MO7Gv_17hgfwTbwJeHQATR9T3fglTOmnagFVS8l-zd7AR</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Kang, Heesuk</creator><creator>Hollister, Scott J</creator><creator>La Marca, Frank</creator><creator>Park, Paul</creator><creator>Lin, Chia-Ying</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering</title><author>Kang, Heesuk ; Hollister, Scott J ; La Marca, Frank ; Park, Paul ; Lin, Chia-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a465t-35ef771ae04cfbee15d7238e56080cefb8f97737965c6adc688c18213c5f8e933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Finite Element Analysis</topic><topic>Humans</topic><topic>Lasers</topic><topic>Lumbar Vertebrae - surgery</topic><topic>Materials Testing</topic><topic>Mechanical Phenomena</topic><topic>Polyesters</topic><topic>Porosity</topic><topic>Research Papers</topic><topic>Spinal Fusion - instrumentation</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Heesuk</creatorcontrib><creatorcontrib>Hollister, Scott J</creatorcontrib><creatorcontrib>La Marca, Frank</creatorcontrib><creatorcontrib>Park, Paul</creatorcontrib><creatorcontrib>Lin, Chia-Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Heesuk</au><au>Hollister, Scott J</au><au>La Marca, Frank</au><au>Park, Paul</au><au>Lin, Chia-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>135</volume><issue>10</issue><spage>101013</spage><epage>101018</epage><pages>101013-101018</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.</abstract><cop>United States</cop><pub>ASME</pub><pmid>23897113</pmid><doi>10.1115/1.4025102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 2013-10, Vol.135 (10), p.101013-101018 |
issn | 0148-0731 1528-8951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3792404 |
source | MEDLINE; ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Animals Biocompatible Materials Finite Element Analysis Humans Lasers Lumbar Vertebrae - surgery Materials Testing Mechanical Phenomena Polyesters Porosity Research Papers Spinal Fusion - instrumentation Swine |
title | Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Biodegradable%20Lumbar%20Interbody%20Fusion%20Cage%20Design%20and%20Fabrication%20Using%20Integrated%20Global-Local%20Topology%20Optimization%20With%20Laser%20Sintering&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Kang,%20Heesuk&rft.date=2013-10-01&rft.volume=135&rft.issue=10&rft.spage=101013&rft.epage=101018&rft.pages=101013-101018&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4025102&rft_dat=%3Cproquest_pubme%3E1512324390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437119770&rft_id=info:pmid/23897113&rfr_iscdi=true |