Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins

Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2013-10, Vol.183 (4), p.1169-1182
Hauptverfasser: Harijith, Anantha, Pendyala, Srikanth, Reddy, Narsa M, Bai, Tao, Usatyuk, Peter V, Berdyshev, Evgeny, Gorshkova, Irina, Huang, Long Shuang, Mohan, Vijay, Garzon, Steve, Kanteti, Prasad, Reddy, Sekhar P, Raj, J Usha, Natarajan, Viswanathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 4
container_start_page 1169
container_title The American journal of pathology
container_volume 183
creator Harijith, Anantha
Pendyala, Srikanth
Reddy, Narsa M
Bai, Tao
Usatyuk, Peter V
Berdyshev, Evgeny
Gorshkova, Irina
Huang, Long Shuang
Mohan, Vijay
Garzon, Steve
Kanteti, Prasad
Reddy, Sekhar P
Raj, J Usha
Natarajan, Viswanathan
description Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1(-/-) (Sphk1(-/-)), sphingosine kinase 2(-/-) (Sphk2(-/-)), and S1P lyase(+/-) (Sgpl1(+/-)) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1(-/-), but not Sphk2(-/-) or Sgpl1(+/-), mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling-regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia.
doi_str_mv 10.1016/j.ajpath.2013.06.018
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3791871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23933064</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-995dc24b04783a9425c4063081120cb58e059125696c10db3b6a4f4057b51f8e3</originalsourceid><addsrcrecordid>eNpVkN2KFDEQhYMo7rj6BiJ5gW6r8jcdLwRZ1h9YVFi9btJJejpjdxKSHtl5HN_UllXRq6IoznfqHEKeI7QIqF4eW3PMZp1aBshbUC1g94DsUDLZMNT4kOwAgDVaCLggT2o9bqviHTwmF4xrzkGJHflxm6cQD6mG6Om3EE31FKnzY7DBR3umNsXRl0pzSau3a0iRmoMJsa50Omdf0l0wTYjuZL2jQ0nRTimf5iVFU87UnWueTQ2Ghk1Hl1P55bMk5-dXtKTZ0zTSW_xMazhEM2-fUBMd_Zju7g03n6fk0Wjm6p_9npfk69vrL1fvm5tP7z5cvblpMlNqbbSWzjIxgNh33GjBpBVbXOgQGdhBdh6kRiaVVhbBDXxQRowC5H6QOHaeX5LX99x8GhbvrI9rMXOfS1i2JH0yof__EsPUH9L3nu81dnvcAC_-BfxV_imb_wQOkoes</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Harijith, Anantha ; Pendyala, Srikanth ; Reddy, Narsa M ; Bai, Tao ; Usatyuk, Peter V ; Berdyshev, Evgeny ; Gorshkova, Irina ; Huang, Long Shuang ; Mohan, Vijay ; Garzon, Steve ; Kanteti, Prasad ; Reddy, Sekhar P ; Raj, J Usha ; Natarajan, Viswanathan</creator><creatorcontrib>Harijith, Anantha ; Pendyala, Srikanth ; Reddy, Narsa M ; Bai, Tao ; Usatyuk, Peter V ; Berdyshev, Evgeny ; Gorshkova, Irina ; Huang, Long Shuang ; Mohan, Vijay ; Garzon, Steve ; Kanteti, Prasad ; Reddy, Sekhar P ; Raj, J Usha ; Natarajan, Viswanathan</creatorcontrib><description>Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1(-/-) (Sphk1(-/-)), sphingosine kinase 2(-/-) (Sphk2(-/-)), and S1P lyase(+/-) (Sgpl1(+/-)) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1(-/-), but not Sphk2(-/-) or Sgpl1(+/-), mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling-regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia.</description><identifier>ISSN: 0002-9440</identifier><identifier>EISSN: 1525-2191</identifier><identifier>DOI: 10.1016/j.ajpath.2013.06.018</identifier><identifier>PMID: 23933064</identifier><language>eng</language><publisher>United States: American Society for Investigative Pathology</publisher><subject>Aldehyde-Lyases - deficiency ; Aldehyde-Lyases - metabolism ; Animals ; Animals, Newborn ; Bronchopulmonary Dysplasia - enzymology ; Bronchopulmonary Dysplasia - etiology ; Bronchopulmonary Dysplasia - pathology ; Bronchopulmonary Dysplasia - prevention &amp; control ; Disease Models, Animal ; Down-Regulation - drug effects ; Endothelial Cells - drug effects ; Endothelial Cells - enzymology ; Endothelial Cells - pathology ; Humans ; Hyperoxia - complications ; Hyperoxia - enzymology ; Hyperoxia - pathology ; Lysophospholipids - metabolism ; Membrane Glycoproteins - metabolism ; Mice ; Mice, Inbred C57BL ; NADPH Oxidase 2 ; NADPH Oxidase 4 ; NADPH Oxidases - metabolism ; Phosphotransferases (Alcohol Group Acceptor) - deficiency ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Pneumonia - complications ; Pneumonia - pathology ; Pulmonary Alveoli - enzymology ; Pulmonary Alveoli - pathology ; rac1 GTP-Binding Protein - metabolism ; Reactive Oxygen Species - metabolism ; Regular ; Signal Transduction ; Sphingosine - analogs &amp; derivatives ; Sphingosine - metabolism</subject><ispartof>The American journal of pathology, 2013-10, Vol.183 (4), p.1169-1182</ispartof><rights>Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.</rights><rights>2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved. 2013 American Society for Investigative Pathology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791871/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791871/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23933064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harijith, Anantha</creatorcontrib><creatorcontrib>Pendyala, Srikanth</creatorcontrib><creatorcontrib>Reddy, Narsa M</creatorcontrib><creatorcontrib>Bai, Tao</creatorcontrib><creatorcontrib>Usatyuk, Peter V</creatorcontrib><creatorcontrib>Berdyshev, Evgeny</creatorcontrib><creatorcontrib>Gorshkova, Irina</creatorcontrib><creatorcontrib>Huang, Long Shuang</creatorcontrib><creatorcontrib>Mohan, Vijay</creatorcontrib><creatorcontrib>Garzon, Steve</creatorcontrib><creatorcontrib>Kanteti, Prasad</creatorcontrib><creatorcontrib>Reddy, Sekhar P</creatorcontrib><creatorcontrib>Raj, J Usha</creatorcontrib><creatorcontrib>Natarajan, Viswanathan</creatorcontrib><title>Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins</title><title>The American journal of pathology</title><addtitle>Am J Pathol</addtitle><description>Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1(-/-) (Sphk1(-/-)), sphingosine kinase 2(-/-) (Sphk2(-/-)), and S1P lyase(+/-) (Sgpl1(+/-)) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1(-/-), but not Sphk2(-/-) or Sgpl1(+/-), mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling-regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia.</description><subject>Aldehyde-Lyases - deficiency</subject><subject>Aldehyde-Lyases - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Bronchopulmonary Dysplasia - enzymology</subject><subject>Bronchopulmonary Dysplasia - etiology</subject><subject>Bronchopulmonary Dysplasia - pathology</subject><subject>Bronchopulmonary Dysplasia - prevention &amp; control</subject><subject>Disease Models, Animal</subject><subject>Down-Regulation - drug effects</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - enzymology</subject><subject>Endothelial Cells - pathology</subject><subject>Humans</subject><subject>Hyperoxia - complications</subject><subject>Hyperoxia - enzymology</subject><subject>Hyperoxia - pathology</subject><subject>Lysophospholipids - metabolism</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidase 4</subject><subject>NADPH Oxidases - metabolism</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - deficiency</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Pneumonia - complications</subject><subject>Pneumonia - pathology</subject><subject>Pulmonary Alveoli - enzymology</subject><subject>Pulmonary Alveoli - pathology</subject><subject>rac1 GTP-Binding Protein - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regular</subject><subject>Signal Transduction</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - metabolism</subject><issn>0002-9440</issn><issn>1525-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN2KFDEQhYMo7rj6BiJ5gW6r8jcdLwRZ1h9YVFi9btJJejpjdxKSHtl5HN_UllXRq6IoznfqHEKeI7QIqF4eW3PMZp1aBshbUC1g94DsUDLZMNT4kOwAgDVaCLggT2o9bqviHTwmF4xrzkGJHflxm6cQD6mG6Om3EE31FKnzY7DBR3umNsXRl0pzSau3a0iRmoMJsa50Omdf0l0wTYjuZL2jQ0nRTimf5iVFU87UnWueTQ2Ghk1Hl1P55bMk5-dXtKTZ0zTSW_xMazhEM2-fUBMd_Zju7g03n6fk0Wjm6p_9npfk69vrL1fvm5tP7z5cvblpMlNqbbSWzjIxgNh33GjBpBVbXOgQGdhBdh6kRiaVVhbBDXxQRowC5H6QOHaeX5LX99x8GhbvrI9rMXOfS1i2JH0yof__EsPUH9L3nu81dnvcAC_-BfxV_imb_wQOkoes</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Harijith, Anantha</creator><creator>Pendyala, Srikanth</creator><creator>Reddy, Narsa M</creator><creator>Bai, Tao</creator><creator>Usatyuk, Peter V</creator><creator>Berdyshev, Evgeny</creator><creator>Gorshkova, Irina</creator><creator>Huang, Long Shuang</creator><creator>Mohan, Vijay</creator><creator>Garzon, Steve</creator><creator>Kanteti, Prasad</creator><creator>Reddy, Sekhar P</creator><creator>Raj, J Usha</creator><creator>Natarajan, Viswanathan</creator><general>American Society for Investigative Pathology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>201310</creationdate><title>Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins</title><author>Harijith, Anantha ; Pendyala, Srikanth ; Reddy, Narsa M ; Bai, Tao ; Usatyuk, Peter V ; Berdyshev, Evgeny ; Gorshkova, Irina ; Huang, Long Shuang ; Mohan, Vijay ; Garzon, Steve ; Kanteti, Prasad ; Reddy, Sekhar P ; Raj, J Usha ; Natarajan, Viswanathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-995dc24b04783a9425c4063081120cb58e059125696c10db3b6a4f4057b51f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aldehyde-Lyases - deficiency</topic><topic>Aldehyde-Lyases - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Bronchopulmonary Dysplasia - enzymology</topic><topic>Bronchopulmonary Dysplasia - etiology</topic><topic>Bronchopulmonary Dysplasia - pathology</topic><topic>Bronchopulmonary Dysplasia - prevention &amp; control</topic><topic>Disease Models, Animal</topic><topic>Down-Regulation - drug effects</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - enzymology</topic><topic>Endothelial Cells - pathology</topic><topic>Humans</topic><topic>Hyperoxia - complications</topic><topic>Hyperoxia - enzymology</topic><topic>Hyperoxia - pathology</topic><topic>Lysophospholipids - metabolism</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidase 4</topic><topic>NADPH Oxidases - metabolism</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - deficiency</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Pneumonia - complications</topic><topic>Pneumonia - pathology</topic><topic>Pulmonary Alveoli - enzymology</topic><topic>Pulmonary Alveoli - pathology</topic><topic>rac1 GTP-Binding Protein - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regular</topic><topic>Signal Transduction</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harijith, Anantha</creatorcontrib><creatorcontrib>Pendyala, Srikanth</creatorcontrib><creatorcontrib>Reddy, Narsa M</creatorcontrib><creatorcontrib>Bai, Tao</creatorcontrib><creatorcontrib>Usatyuk, Peter V</creatorcontrib><creatorcontrib>Berdyshev, Evgeny</creatorcontrib><creatorcontrib>Gorshkova, Irina</creatorcontrib><creatorcontrib>Huang, Long Shuang</creatorcontrib><creatorcontrib>Mohan, Vijay</creatorcontrib><creatorcontrib>Garzon, Steve</creatorcontrib><creatorcontrib>Kanteti, Prasad</creatorcontrib><creatorcontrib>Reddy, Sekhar P</creatorcontrib><creatorcontrib>Raj, J Usha</creatorcontrib><creatorcontrib>Natarajan, Viswanathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The American journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harijith, Anantha</au><au>Pendyala, Srikanth</au><au>Reddy, Narsa M</au><au>Bai, Tao</au><au>Usatyuk, Peter V</au><au>Berdyshev, Evgeny</au><au>Gorshkova, Irina</au><au>Huang, Long Shuang</au><au>Mohan, Vijay</au><au>Garzon, Steve</au><au>Kanteti, Prasad</au><au>Reddy, Sekhar P</au><au>Raj, J Usha</au><au>Natarajan, Viswanathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins</atitle><jtitle>The American journal of pathology</jtitle><addtitle>Am J Pathol</addtitle><date>2013-10</date><risdate>2013</risdate><volume>183</volume><issue>4</issue><spage>1169</spage><epage>1182</epage><pages>1169-1182</pages><issn>0002-9440</issn><eissn>1525-2191</eissn><abstract>Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1(-/-) (Sphk1(-/-)), sphingosine kinase 2(-/-) (Sphk2(-/-)), and S1P lyase(+/-) (Sgpl1(+/-)) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1(-/-), but not Sphk2(-/-) or Sgpl1(+/-), mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling-regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia.</abstract><cop>United States</cop><pub>American Society for Investigative Pathology</pub><pmid>23933064</pmid><doi>10.1016/j.ajpath.2013.06.018</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9440
ispartof The American journal of pathology, 2013-10, Vol.183 (4), p.1169-1182
issn 0002-9440
1525-2191
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3791871
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Aldehyde-Lyases - deficiency
Aldehyde-Lyases - metabolism
Animals
Animals, Newborn
Bronchopulmonary Dysplasia - enzymology
Bronchopulmonary Dysplasia - etiology
Bronchopulmonary Dysplasia - pathology
Bronchopulmonary Dysplasia - prevention & control
Disease Models, Animal
Down-Regulation - drug effects
Endothelial Cells - drug effects
Endothelial Cells - enzymology
Endothelial Cells - pathology
Humans
Hyperoxia - complications
Hyperoxia - enzymology
Hyperoxia - pathology
Lysophospholipids - metabolism
Membrane Glycoproteins - metabolism
Mice
Mice, Inbred C57BL
NADPH Oxidase 2
NADPH Oxidase 4
NADPH Oxidases - metabolism
Phosphotransferases (Alcohol Group Acceptor) - deficiency
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Pneumonia - complications
Pneumonia - pathology
Pulmonary Alveoli - enzymology
Pulmonary Alveoli - pathology
rac1 GTP-Binding Protein - metabolism
Reactive Oxygen Species - metabolism
Regular
Signal Transduction
Sphingosine - analogs & derivatives
Sphingosine - metabolism
title Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingosine%20kinase%201%20deficiency%20confers%20protection%20against%20hyperoxia-induced%20bronchopulmonary%20dysplasia%20in%20a%20murine%20model:%20role%20of%20S1P%20signaling%20and%20Nox%20proteins&rft.jtitle=The%20American%20journal%20of%20pathology&rft.au=Harijith,%20Anantha&rft.date=2013-10&rft.volume=183&rft.issue=4&rft.spage=1169&rft.epage=1182&rft.pages=1169-1182&rft.issn=0002-9440&rft.eissn=1525-2191&rft_id=info:doi/10.1016/j.ajpath.2013.06.018&rft_dat=%3Cpubmed%3E23933064%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23933064&rfr_iscdi=true