Effect of a Monofunctional Phenanthriplatin-DNA Adduct on RNA Polymerase II Transcriptional Fidelity and Translesion Synthesis

Transcription inhibition by platinum anticancer drugs is an important component of their mechanism of action. Phen­anthri­platin, a cisplatin derivative containing phen­anthridine in place of one of the chloride ligands, forms highly potent monofunctional adducts on DNA having a structure and spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-09, Vol.135 (35), p.13054-13061
Hauptverfasser: Kellinger, Matthew W, Park, Ga Young, Chong, Jenny, Lippard, Stephen J, Wang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13061
container_issue 35
container_start_page 13054
container_title Journal of the American Chemical Society
container_volume 135
creator Kellinger, Matthew W
Park, Ga Young
Chong, Jenny
Lippard, Stephen J
Wang, Dong
description Transcription inhibition by platinum anticancer drugs is an important component of their mechanism of action. Phen­anthri­platin, a cisplatin derivative containing phen­anthridine in place of one of the chloride ligands, forms highly potent monofunctional adducts on DNA having a structure and spectrum of anticancer activity distinct from those of the parent drug. Understanding the functional consequences of DNA damage by phen­anthri­platin for the normal functions of RNA polymerase II (Pol II), the major cellular transcription machinery component, is an important step toward elucidating its mechanism of action. In this study, we present the first systematic mechanistic investigation that addresses how a site-specific phen­anthri­platin-DNA d(G) monofunctional adduct affects the Pol II elongation and transcriptional fidelity checkpoint steps. Pol II processing of the phen­anthri­platin lesion differs significantly from that of the canonical cisplatin-DNA 1,2-d(GpG) intrastrand cross-link. A majority of Pol II elongation complexes stall after successful addition of CTP opposite the phen­anthri­platin-dG adduct in an error-free manner, with specificity for CTP incorporation being essentially the same as for undamaged dG on the template. A small portion of Pol II undergoes slow, error-prone bypass of the phen­anthri­platin-dG lesion, which resembles DNA polymerases that similarly switch from high-fidelity replicative DNA processing (error-free) to low-fidelity translesion DNA synthesis (error-prone) at DNA damage sites. These results provide the first insights into how the Pol II transcription machinery processes the most abundant DNA lesion of the monofunctional phen­anthri­platin anticancer drug candidate and enrich our general understanding of Pol II transcription fidelity maintenance, lesion bypass, and transcription-derived mutagenesis. Because of the current interest in monofunctional, DNA-damaging metallodrugs, these results are of likely relevance to a broad spectrum of next-generation anticancer agents being developed by the medicinal inorganic chemistry community.
doi_str_mv 10.1021/ja405475y
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3791135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d112879461</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-799b78deb4eb46703ea72ddc54408f61923901e4e4d6867a616046642fb184883</originalsourceid><addsrcrecordid>eNptkc9LwzAUgIMobv44-A9ILh48VJM0TdqLMOamg6lD57lkTeoyumQkrdCLf7sZnUNBCCSP9-V7vPcAuMDoBiOCb1eCooTypD0AfZwQFCWYsEPQRwiRiKcs7oET71chpCTFx6BH4ozwhPM--BqVpSpqaEso4JM1tmxMUWtrRAVnS2WEqZdObypRaxPdPw_gQMpmyxv4GqKZrdq1csIrOJnAuRPGFwHfCcZaqkrXLRRGdslK-ZCCb23Qhqc_A0elqLw6392n4H08mg8fo-nLw2Q4mEbbzuqIZ9mCp1ItaDiMo1gJTqQsEkpRWjKchYYQVlRRyVLGBcMMUcYoKRc4pWkan4K7zrtpFmslC2VqJ6p84_RauDa3Qud_M0Yv8w_7mcc8wzhOguC6ExTOeu9Uuf-LUb5dQr5fQmAvfxfbkz9TD8BVB4jC5yvbuDAs_4_oG8NekD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of a Monofunctional Phenanthriplatin-DNA Adduct on RNA Polymerase II Transcriptional Fidelity and Translesion Synthesis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kellinger, Matthew W ; Park, Ga Young ; Chong, Jenny ; Lippard, Stephen J ; Wang, Dong</creator><creatorcontrib>Kellinger, Matthew W ; Park, Ga Young ; Chong, Jenny ; Lippard, Stephen J ; Wang, Dong</creatorcontrib><description>Transcription inhibition by platinum anticancer drugs is an important component of their mechanism of action. Phen­anthri­platin, a cisplatin derivative containing phen­anthridine in place of one of the chloride ligands, forms highly potent monofunctional adducts on DNA having a structure and spectrum of anticancer activity distinct from those of the parent drug. Understanding the functional consequences of DNA damage by phen­anthri­platin for the normal functions of RNA polymerase II (Pol II), the major cellular transcription machinery component, is an important step toward elucidating its mechanism of action. In this study, we present the first systematic mechanistic investigation that addresses how a site-specific phen­anthri­platin-DNA d(G) monofunctional adduct affects the Pol II elongation and transcriptional fidelity checkpoint steps. Pol II processing of the phen­anthri­platin lesion differs significantly from that of the canonical cisplatin-DNA 1,2-d(GpG) intrastrand cross-link. A majority of Pol II elongation complexes stall after successful addition of CTP opposite the phen­anthri­platin-dG adduct in an error-free manner, with specificity for CTP incorporation being essentially the same as for undamaged dG on the template. A small portion of Pol II undergoes slow, error-prone bypass of the phen­anthri­platin-dG lesion, which resembles DNA polymerases that similarly switch from high-fidelity replicative DNA processing (error-free) to low-fidelity translesion DNA synthesis (error-prone) at DNA damage sites. These results provide the first insights into how the Pol II transcription machinery processes the most abundant DNA lesion of the monofunctional phen­anthri­platin anticancer drug candidate and enrich our general understanding of Pol II transcription fidelity maintenance, lesion bypass, and transcription-derived mutagenesis. Because of the current interest in monofunctional, DNA-damaging metallodrugs, these results are of likely relevance to a broad spectrum of next-generation anticancer agents being developed by the medicinal inorganic chemistry community.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja405475y</identifier><identifier>PMID: 23927577</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA Adducts - chemistry ; DNA Adducts - drug effects ; DNA Adducts - metabolism ; DNA Damage ; Molecular Structure ; Organoplatinum Compounds - chemistry ; Organoplatinum Compounds - pharmacology ; Phenanthridines - chemistry ; Phenanthridines - pharmacology ; RNA Polymerase II - antagonists &amp; inhibitors ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; Structure-Activity Relationship ; Transcription, Genetic - drug effects</subject><ispartof>Journal of the American Chemical Society, 2013-09, Vol.135 (35), p.13054-13061</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-799b78deb4eb46703ea72ddc54408f61923901e4e4d6867a616046642fb184883</citedby><cites>FETCH-LOGICAL-a405t-799b78deb4eb46703ea72ddc54408f61923901e4e4d6867a616046642fb184883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja405475y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja405475y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23927577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellinger, Matthew W</creatorcontrib><creatorcontrib>Park, Ga Young</creatorcontrib><creatorcontrib>Chong, Jenny</creatorcontrib><creatorcontrib>Lippard, Stephen J</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>Effect of a Monofunctional Phenanthriplatin-DNA Adduct on RNA Polymerase II Transcriptional Fidelity and Translesion Synthesis</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Transcription inhibition by platinum anticancer drugs is an important component of their mechanism of action. Phen­anthri­platin, a cisplatin derivative containing phen­anthridine in place of one of the chloride ligands, forms highly potent monofunctional adducts on DNA having a structure and spectrum of anticancer activity distinct from those of the parent drug. Understanding the functional consequences of DNA damage by phen­anthri­platin for the normal functions of RNA polymerase II (Pol II), the major cellular transcription machinery component, is an important step toward elucidating its mechanism of action. In this study, we present the first systematic mechanistic investigation that addresses how a site-specific phen­anthri­platin-DNA d(G) monofunctional adduct affects the Pol II elongation and transcriptional fidelity checkpoint steps. Pol II processing of the phen­anthri­platin lesion differs significantly from that of the canonical cisplatin-DNA 1,2-d(GpG) intrastrand cross-link. A majority of Pol II elongation complexes stall after successful addition of CTP opposite the phen­anthri­platin-dG adduct in an error-free manner, with specificity for CTP incorporation being essentially the same as for undamaged dG on the template. A small portion of Pol II undergoes slow, error-prone bypass of the phen­anthri­platin-dG lesion, which resembles DNA polymerases that similarly switch from high-fidelity replicative DNA processing (error-free) to low-fidelity translesion DNA synthesis (error-prone) at DNA damage sites. These results provide the first insights into how the Pol II transcription machinery processes the most abundant DNA lesion of the monofunctional phen­anthri­platin anticancer drug candidate and enrich our general understanding of Pol II transcription fidelity maintenance, lesion bypass, and transcription-derived mutagenesis. Because of the current interest in monofunctional, DNA-damaging metallodrugs, these results are of likely relevance to a broad spectrum of next-generation anticancer agents being developed by the medicinal inorganic chemistry community.</description><subject>DNA Adducts - chemistry</subject><subject>DNA Adducts - drug effects</subject><subject>DNA Adducts - metabolism</subject><subject>DNA Damage</subject><subject>Molecular Structure</subject><subject>Organoplatinum Compounds - chemistry</subject><subject>Organoplatinum Compounds - pharmacology</subject><subject>Phenanthridines - chemistry</subject><subject>Phenanthridines - pharmacology</subject><subject>RNA Polymerase II - antagonists &amp; inhibitors</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Transcription, Genetic - drug effects</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9LwzAUgIMobv44-A9ILh48VJM0TdqLMOamg6lD57lkTeoyumQkrdCLf7sZnUNBCCSP9-V7vPcAuMDoBiOCb1eCooTypD0AfZwQFCWYsEPQRwiRiKcs7oET71chpCTFx6BH4ozwhPM--BqVpSpqaEso4JM1tmxMUWtrRAVnS2WEqZdObypRaxPdPw_gQMpmyxv4GqKZrdq1csIrOJnAuRPGFwHfCcZaqkrXLRRGdslK-ZCCb23Qhqc_A0elqLw6392n4H08mg8fo-nLw2Q4mEbbzuqIZ9mCp1ItaDiMo1gJTqQsEkpRWjKchYYQVlRRyVLGBcMMUcYoKRc4pWkan4K7zrtpFmslC2VqJ6p84_RauDa3Qud_M0Yv8w_7mcc8wzhOguC6ExTOeu9Uuf-LUb5dQr5fQmAvfxfbkz9TD8BVB4jC5yvbuDAs_4_oG8NekD4</recordid><startdate>20130904</startdate><enddate>20130904</enddate><creator>Kellinger, Matthew W</creator><creator>Park, Ga Young</creator><creator>Chong, Jenny</creator><creator>Lippard, Stephen J</creator><creator>Wang, Dong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130904</creationdate><title>Effect of a Monofunctional Phenanthriplatin-DNA Adduct on RNA Polymerase II Transcriptional Fidelity and Translesion Synthesis</title><author>Kellinger, Matthew W ; Park, Ga Young ; Chong, Jenny ; Lippard, Stephen J ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-799b78deb4eb46703ea72ddc54408f61923901e4e4d6867a616046642fb184883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>DNA Adducts - chemistry</topic><topic>DNA Adducts - drug effects</topic><topic>DNA Adducts - metabolism</topic><topic>DNA Damage</topic><topic>Molecular Structure</topic><topic>Organoplatinum Compounds - chemistry</topic><topic>Organoplatinum Compounds - pharmacology</topic><topic>Phenanthridines - chemistry</topic><topic>Phenanthridines - pharmacology</topic><topic>RNA Polymerase II - antagonists &amp; inhibitors</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellinger, Matthew W</creatorcontrib><creatorcontrib>Park, Ga Young</creatorcontrib><creatorcontrib>Chong, Jenny</creatorcontrib><creatorcontrib>Lippard, Stephen J</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellinger, Matthew W</au><au>Park, Ga Young</au><au>Chong, Jenny</au><au>Lippard, Stephen J</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a Monofunctional Phenanthriplatin-DNA Adduct on RNA Polymerase II Transcriptional Fidelity and Translesion Synthesis</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-09-04</date><risdate>2013</risdate><volume>135</volume><issue>35</issue><spage>13054</spage><epage>13061</epage><pages>13054-13061</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Transcription inhibition by platinum anticancer drugs is an important component of their mechanism of action. Phen­anthri­platin, a cisplatin derivative containing phen­anthridine in place of one of the chloride ligands, forms highly potent monofunctional adducts on DNA having a structure and spectrum of anticancer activity distinct from those of the parent drug. Understanding the functional consequences of DNA damage by phen­anthri­platin for the normal functions of RNA polymerase II (Pol II), the major cellular transcription machinery component, is an important step toward elucidating its mechanism of action. In this study, we present the first systematic mechanistic investigation that addresses how a site-specific phen­anthri­platin-DNA d(G) monofunctional adduct affects the Pol II elongation and transcriptional fidelity checkpoint steps. Pol II processing of the phen­anthri­platin lesion differs significantly from that of the canonical cisplatin-DNA 1,2-d(GpG) intrastrand cross-link. A majority of Pol II elongation complexes stall after successful addition of CTP opposite the phen­anthri­platin-dG adduct in an error-free manner, with specificity for CTP incorporation being essentially the same as for undamaged dG on the template. A small portion of Pol II undergoes slow, error-prone bypass of the phen­anthri­platin-dG lesion, which resembles DNA polymerases that similarly switch from high-fidelity replicative DNA processing (error-free) to low-fidelity translesion DNA synthesis (error-prone) at DNA damage sites. These results provide the first insights into how the Pol II transcription machinery processes the most abundant DNA lesion of the monofunctional phen­anthri­platin anticancer drug candidate and enrich our general understanding of Pol II transcription fidelity maintenance, lesion bypass, and transcription-derived mutagenesis. Because of the current interest in monofunctional, DNA-damaging metallodrugs, these results are of likely relevance to a broad spectrum of next-generation anticancer agents being developed by the medicinal inorganic chemistry community.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23927577</pmid><doi>10.1021/ja405475y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2013-09, Vol.135 (35), p.13054-13061
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3791135
source MEDLINE; American Chemical Society Journals
subjects DNA Adducts - chemistry
DNA Adducts - drug effects
DNA Adducts - metabolism
DNA Damage
Molecular Structure
Organoplatinum Compounds - chemistry
Organoplatinum Compounds - pharmacology
Phenanthridines - chemistry
Phenanthridines - pharmacology
RNA Polymerase II - antagonists & inhibitors
RNA Polymerase II - chemistry
RNA Polymerase II - metabolism
Structure-Activity Relationship
Transcription, Genetic - drug effects
title Effect of a Monofunctional Phenanthriplatin-DNA Adduct on RNA Polymerase II Transcriptional Fidelity and Translesion Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20Monofunctional%20Phenanthriplatin-DNA%20Adduct%20on%20RNA%20Polymerase%20II%20Transcriptional%20Fidelity%20and%20Translesion%20Synthesis&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kellinger,%20Matthew%20W&rft.date=2013-09-04&rft.volume=135&rft.issue=35&rft.spage=13054&rft.epage=13061&rft.pages=13054-13061&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja405475y&rft_dat=%3Cacs_pubme%3Ed112879461%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23927577&rfr_iscdi=true