Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channel...
Gespeichert in:
Veröffentlicht in: | The Journal of general physiology 2013-10, Vol.142 (4), p.381-404 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | 4 |
container_start_page | 381 |
container_title | The Journal of general physiology |
container_volume | 142 |
creator | Vocke, Kerstin Dauner, Kristin Hahn, Anne Ulbrich, Anne Broecker, Jana Keller, Sandro Frings, Stephan Möhrlen, Frank |
description | Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types. |
doi_str_mv | 10.1085/jgp.201311015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3787769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092928681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMoun4cvUrBi5dqkiZNexFk8QsEL3qUME2na5Y0WZt2wf_eiLqoc5lh5sdjHo-QY0bPGa3kxXKxOueUFYxRJrfIjElBc6VEtU1mlHKeM17LPbIf45Kmkpzukj0uaMXqis3IyxxcH9rJWZ-3uELfoh8zMKNdw2iDz8C3mfW_FqFLu2BG6K3PDDhjpz5fwIhtZl5dGGyLaQDv0cVDstOBi3j03Q_I88310_wuf3i8vZ9fPeRGMjHmKBolGZaoupZxXhnkpu5KQKSFoLRopGhASSWSRSiNhEoVTaNUzRvWGYPFAbn80l1NTY-tSR4GcHo12B6Gdx3A6r8Xb1_1Iqx1oSqlyjoJnH0LDOFtwjjq3kaDzoHHMEXNhKwkLwuqEnr6D12GafDJXqLSh7yuBU9U_kWZIcQ4YLd5hlH9GZxOwelNcIk_-e1gQ_8kVXwA4veV6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440129942</pqid></control><display><type>article</type><title>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vocke, Kerstin ; Dauner, Kristin ; Hahn, Anne ; Ulbrich, Anne ; Broecker, Jana ; Keller, Sandro ; Frings, Stephan ; Möhrlen, Frank</creator><creatorcontrib>Vocke, Kerstin ; Dauner, Kristin ; Hahn, Anne ; Ulbrich, Anne ; Broecker, Jana ; Keller, Sandro ; Frings, Stephan ; Möhrlen, Frank</creatorcontrib><description>Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.201311015</identifier><identifier>PMID: 24081981</identifier><identifier>CODEN: JGPLAD</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Action Potentials ; Amino Acid Sequence ; Animals ; Anoctamin-1 ; Anoctamins ; Binding Sites ; Brain - metabolism ; Calcium ; Calcium - metabolism ; Calmodulin - metabolism ; Cells ; Chloride Channels - chemistry ; Chloride Channels - genetics ; Chloride Channels - metabolism ; HEK293 Cells ; Humans ; Ion Channel Gating ; Mice ; Molecular Sequence Data ; Mutagenesis ; Mutation ; Neurons - metabolism ; Neurons - physiology ; Protein Binding ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Proteins ; Rats ; Retina - metabolism</subject><ispartof>The Journal of general physiology, 2013-10, Vol.142 (4), p.381-404</ispartof><rights>Copyright Rockefeller University Press Oct 2013</rights><rights>2013 Vocke et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</citedby><cites>FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24081981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vocke, Kerstin</creatorcontrib><creatorcontrib>Dauner, Kristin</creatorcontrib><creatorcontrib>Hahn, Anne</creatorcontrib><creatorcontrib>Ulbrich, Anne</creatorcontrib><creatorcontrib>Broecker, Jana</creatorcontrib><creatorcontrib>Keller, Sandro</creatorcontrib><creatorcontrib>Frings, Stephan</creatorcontrib><creatorcontrib>Möhrlen, Frank</creatorcontrib><title>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.</description><subject>Action Potentials</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Anoctamin-1</subject><subject>Anoctamins</subject><subject>Binding Sites</subject><subject>Brain - metabolism</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calmodulin - metabolism</subject><subject>Cells</subject><subject>Chloride Channels - chemistry</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Protein Binding</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Rats</subject><subject>Retina - metabolism</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMoun4cvUrBi5dqkiZNexFk8QsEL3qUME2na5Y0WZt2wf_eiLqoc5lh5sdjHo-QY0bPGa3kxXKxOueUFYxRJrfIjElBc6VEtU1mlHKeM17LPbIf45Kmkpzukj0uaMXqis3IyxxcH9rJWZ-3uELfoh8zMKNdw2iDz8C3mfW_FqFLu2BG6K3PDDhjpz5fwIhtZl5dGGyLaQDv0cVDstOBi3j03Q_I88310_wuf3i8vZ9fPeRGMjHmKBolGZaoupZxXhnkpu5KQKSFoLRopGhASSWSRSiNhEoVTaNUzRvWGYPFAbn80l1NTY-tSR4GcHo12B6Gdx3A6r8Xb1_1Iqx1oSqlyjoJnH0LDOFtwjjq3kaDzoHHMEXNhKwkLwuqEnr6D12GafDJXqLSh7yuBU9U_kWZIcQ4YLd5hlH9GZxOwelNcIk_-e1gQ_8kVXwA4veV6w</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Vocke, Kerstin</creator><creator>Dauner, Kristin</creator><creator>Hahn, Anne</creator><creator>Ulbrich, Anne</creator><creator>Broecker, Jana</creator><creator>Keller, Sandro</creator><creator>Frings, Stephan</creator><creator>Möhrlen, Frank</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</title><author>Vocke, Kerstin ; Dauner, Kristin ; Hahn, Anne ; Ulbrich, Anne ; Broecker, Jana ; Keller, Sandro ; Frings, Stephan ; Möhrlen, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Anoctamin-1</topic><topic>Anoctamins</topic><topic>Binding Sites</topic><topic>Brain - metabolism</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calmodulin - metabolism</topic><topic>Cells</topic><topic>Chloride Channels - chemistry</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Protein Binding</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Rats</topic><topic>Retina - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vocke, Kerstin</creatorcontrib><creatorcontrib>Dauner, Kristin</creatorcontrib><creatorcontrib>Hahn, Anne</creatorcontrib><creatorcontrib>Ulbrich, Anne</creatorcontrib><creatorcontrib>Broecker, Jana</creatorcontrib><creatorcontrib>Keller, Sandro</creatorcontrib><creatorcontrib>Frings, Stephan</creatorcontrib><creatorcontrib>Möhrlen, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vocke, Kerstin</au><au>Dauner, Kristin</au><au>Hahn, Anne</au><au>Ulbrich, Anne</au><au>Broecker, Jana</au><au>Keller, Sandro</au><au>Frings, Stephan</au><au>Möhrlen, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>142</volume><issue>4</issue><spage>381</spage><epage>404</epage><pages>381-404</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><coden>JGPLAD</coden><abstract>Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>24081981</pmid><doi>10.1085/jgp.201311015</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1295 |
ispartof | The Journal of general physiology, 2013-10, Vol.142 (4), p.381-404 |
issn | 0022-1295 1540-7748 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3787769 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Action Potentials Amino Acid Sequence Animals Anoctamin-1 Anoctamins Binding Sites Brain - metabolism Calcium Calcium - metabolism Calmodulin - metabolism Cells Chloride Channels - chemistry Chloride Channels - genetics Chloride Channels - metabolism HEK293 Cells Humans Ion Channel Gating Mice Molecular Sequence Data Mutagenesis Mutation Neurons - metabolism Neurons - physiology Protein Binding Protein Isoforms - genetics Protein Isoforms - metabolism Proteins Rats Retina - metabolism |
title | Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calmodulin-dependent%20activation%20and%20inactivation%20of%20anoctamin%20calcium-gated%20chloride%20channels&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Vocke,%20Kerstin&rft.date=2013-10-01&rft.volume=142&rft.issue=4&rft.spage=381&rft.epage=404&rft.pages=381-404&rft.issn=0022-1295&rft.eissn=1540-7748&rft.coden=JGPLAD&rft_id=info:doi/10.1085/jgp.201311015&rft_dat=%3Cproquest_pubme%3E3092928681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440129942&rft_id=info:pmid/24081981&rfr_iscdi=true |