Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels

Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2013-10, Vol.142 (4), p.381-404
Hauptverfasser: Vocke, Kerstin, Dauner, Kristin, Hahn, Anne, Ulbrich, Anne, Broecker, Jana, Keller, Sandro, Frings, Stephan, Möhrlen, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404
container_issue 4
container_start_page 381
container_title The Journal of general physiology
container_volume 142
creator Vocke, Kerstin
Dauner, Kristin
Hahn, Anne
Ulbrich, Anne
Broecker, Jana
Keller, Sandro
Frings, Stephan
Möhrlen, Frank
description Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.
doi_str_mv 10.1085/jgp.201311015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3787769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092928681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMoun4cvUrBi5dqkiZNexFk8QsEL3qUME2na5Y0WZt2wf_eiLqoc5lh5sdjHo-QY0bPGa3kxXKxOueUFYxRJrfIjElBc6VEtU1mlHKeM17LPbIf45Kmkpzukj0uaMXqis3IyxxcH9rJWZ-3uELfoh8zMKNdw2iDz8C3mfW_FqFLu2BG6K3PDDhjpz5fwIhtZl5dGGyLaQDv0cVDstOBi3j03Q_I88310_wuf3i8vZ9fPeRGMjHmKBolGZaoupZxXhnkpu5KQKSFoLRopGhASSWSRSiNhEoVTaNUzRvWGYPFAbn80l1NTY-tSR4GcHo12B6Gdx3A6r8Xb1_1Iqx1oSqlyjoJnH0LDOFtwjjq3kaDzoHHMEXNhKwkLwuqEnr6D12GafDJXqLSh7yuBU9U_kWZIcQ4YLd5hlH9GZxOwelNcIk_-e1gQ_8kVXwA4veV6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440129942</pqid></control><display><type>article</type><title>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vocke, Kerstin ; Dauner, Kristin ; Hahn, Anne ; Ulbrich, Anne ; Broecker, Jana ; Keller, Sandro ; Frings, Stephan ; Möhrlen, Frank</creator><creatorcontrib>Vocke, Kerstin ; Dauner, Kristin ; Hahn, Anne ; Ulbrich, Anne ; Broecker, Jana ; Keller, Sandro ; Frings, Stephan ; Möhrlen, Frank</creatorcontrib><description>Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.201311015</identifier><identifier>PMID: 24081981</identifier><identifier>CODEN: JGPLAD</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Action Potentials ; Amino Acid Sequence ; Animals ; Anoctamin-1 ; Anoctamins ; Binding Sites ; Brain - metabolism ; Calcium ; Calcium - metabolism ; Calmodulin - metabolism ; Cells ; Chloride Channels - chemistry ; Chloride Channels - genetics ; Chloride Channels - metabolism ; HEK293 Cells ; Humans ; Ion Channel Gating ; Mice ; Molecular Sequence Data ; Mutagenesis ; Mutation ; Neurons - metabolism ; Neurons - physiology ; Protein Binding ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Proteins ; Rats ; Retina - metabolism</subject><ispartof>The Journal of general physiology, 2013-10, Vol.142 (4), p.381-404</ispartof><rights>Copyright Rockefeller University Press Oct 2013</rights><rights>2013 Vocke et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</citedby><cites>FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24081981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vocke, Kerstin</creatorcontrib><creatorcontrib>Dauner, Kristin</creatorcontrib><creatorcontrib>Hahn, Anne</creatorcontrib><creatorcontrib>Ulbrich, Anne</creatorcontrib><creatorcontrib>Broecker, Jana</creatorcontrib><creatorcontrib>Keller, Sandro</creatorcontrib><creatorcontrib>Frings, Stephan</creatorcontrib><creatorcontrib>Möhrlen, Frank</creatorcontrib><title>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.</description><subject>Action Potentials</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Anoctamin-1</subject><subject>Anoctamins</subject><subject>Binding Sites</subject><subject>Brain - metabolism</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calmodulin - metabolism</subject><subject>Cells</subject><subject>Chloride Channels - chemistry</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Protein Binding</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Proteins</subject><subject>Rats</subject><subject>Retina - metabolism</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMoun4cvUrBi5dqkiZNexFk8QsEL3qUME2na5Y0WZt2wf_eiLqoc5lh5sdjHo-QY0bPGa3kxXKxOueUFYxRJrfIjElBc6VEtU1mlHKeM17LPbIf45Kmkpzukj0uaMXqis3IyxxcH9rJWZ-3uELfoh8zMKNdw2iDz8C3mfW_FqFLu2BG6K3PDDhjpz5fwIhtZl5dGGyLaQDv0cVDstOBi3j03Q_I88310_wuf3i8vZ9fPeRGMjHmKBolGZaoupZxXhnkpu5KQKSFoLRopGhASSWSRSiNhEoVTaNUzRvWGYPFAbn80l1NTY-tSR4GcHo12B6Gdx3A6r8Xb1_1Iqx1oSqlyjoJnH0LDOFtwjjq3kaDzoHHMEXNhKwkLwuqEnr6D12GafDJXqLSh7yuBU9U_kWZIcQ4YLd5hlH9GZxOwelNcIk_-e1gQ_8kVXwA4veV6w</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Vocke, Kerstin</creator><creator>Dauner, Kristin</creator><creator>Hahn, Anne</creator><creator>Ulbrich, Anne</creator><creator>Broecker, Jana</creator><creator>Keller, Sandro</creator><creator>Frings, Stephan</creator><creator>Möhrlen, Frank</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</title><author>Vocke, Kerstin ; Dauner, Kristin ; Hahn, Anne ; Ulbrich, Anne ; Broecker, Jana ; Keller, Sandro ; Frings, Stephan ; Möhrlen, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-e4b751e6e7fd1228ce2c9f6aee034003b54ba7574015a6c5a873bb7792b1fcce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Anoctamin-1</topic><topic>Anoctamins</topic><topic>Binding Sites</topic><topic>Brain - metabolism</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calmodulin - metabolism</topic><topic>Cells</topic><topic>Chloride Channels - chemistry</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Protein Binding</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Proteins</topic><topic>Rats</topic><topic>Retina - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vocke, Kerstin</creatorcontrib><creatorcontrib>Dauner, Kristin</creatorcontrib><creatorcontrib>Hahn, Anne</creatorcontrib><creatorcontrib>Ulbrich, Anne</creatorcontrib><creatorcontrib>Broecker, Jana</creatorcontrib><creatorcontrib>Keller, Sandro</creatorcontrib><creatorcontrib>Frings, Stephan</creatorcontrib><creatorcontrib>Möhrlen, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vocke, Kerstin</au><au>Dauner, Kristin</au><au>Hahn, Anne</au><au>Ulbrich, Anne</au><au>Broecker, Jana</au><au>Keller, Sandro</au><au>Frings, Stephan</au><au>Möhrlen, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>142</volume><issue>4</issue><spage>381</spage><epage>404</epage><pages>381-404</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><coden>JGPLAD</coden><abstract>Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>24081981</pmid><doi>10.1085/jgp.201311015</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2013-10, Vol.142 (4), p.381-404
issn 0022-1295
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3787769
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Action Potentials
Amino Acid Sequence
Animals
Anoctamin-1
Anoctamins
Binding Sites
Brain - metabolism
Calcium
Calcium - metabolism
Calmodulin - metabolism
Cells
Chloride Channels - chemistry
Chloride Channels - genetics
Chloride Channels - metabolism
HEK293 Cells
Humans
Ion Channel Gating
Mice
Molecular Sequence Data
Mutagenesis
Mutation
Neurons - metabolism
Neurons - physiology
Protein Binding
Protein Isoforms - genetics
Protein Isoforms - metabolism
Proteins
Rats
Retina - metabolism
title Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calmodulin-dependent%20activation%20and%20inactivation%20of%20anoctamin%20calcium-gated%20chloride%20channels&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Vocke,%20Kerstin&rft.date=2013-10-01&rft.volume=142&rft.issue=4&rft.spage=381&rft.epage=404&rft.pages=381-404&rft.issn=0022-1295&rft.eissn=1540-7748&rft.coden=JGPLAD&rft_id=info:doi/10.1085/jgp.201311015&rft_dat=%3Cproquest_pubme%3E3092928681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440129942&rft_id=info:pmid/24081981&rfr_iscdi=true