Heterosynaptic plasticity prevents runaway synaptic dynamics

Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-10, Vol.33 (40), p.15915-15929
Hauptverfasser: Chen, Jen-Yung, Lonjers, Peter, Lee, Christopher, Chistiakova, Marina, Volgushev, Maxim, Bazhenov, Maxim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15929
container_issue 40
container_start_page 15915
container_title The Journal of neuroscience
container_volume 33
creator Chen, Jen-Yung
Lonjers, Peter
Lee, Christopher
Chistiakova, Marina
Volgushev, Maxim
Bazhenov, Maxim
description Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity--Hebbian and heterosynaptic--may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.
doi_str_mv 10.1523/JNEUROSCI.5088-12.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3787503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443404918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-158e782b673c373d7112a54142ee626911b2dbec4e8521c7fcefdfb52805f8143</originalsourceid><addsrcrecordid>eNqFkU9Lw0AQxRdRbK1-hdKjl9Sd_ZPdgAhSqq2IBbXnZbPZaCRNYjap5Nu7pTXoydMMvDePmfkhNAY8BU7o1cPTfP28epktpxxLGQCZEgz0CA29GgWEYThGQ0wEDkIm2ACdOfeBMRYYxCkaeF1GLBJDdL2wja1L1xW6ajIzqXLtfM2ablLVdmuLxk3qttBfupv0psQ3m8y4c3SS6tzZi0MdofXd_HW2CB5X98vZ7WNgONAmAC6tkCQOBTVU0EQAEM0ZMGJtSMIIICZJbA2zkhMwIjU2TdKYE4l5KoHREbrZ51ZtvLGJ8VvVOldVnW103alSZ-qvUmTv6q3cKiqk4Jj6gMtDQF1-ttY1apM5Y_NcF7ZsnQLOIaQgBfxvZYwyzCKQ3hrurcY_0NU27TcCrHaUVE9J7SgpIGpHyQ-Of9_Tj_1god9X0pAZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443404918</pqid></control><display><type>article</type><title>Heterosynaptic plasticity prevents runaway synaptic dynamics</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chen, Jen-Yung ; Lonjers, Peter ; Lee, Christopher ; Chistiakova, Marina ; Volgushev, Maxim ; Bazhenov, Maxim</creator><creatorcontrib>Chen, Jen-Yung ; Lonjers, Peter ; Lee, Christopher ; Chistiakova, Marina ; Volgushev, Maxim ; Bazhenov, Maxim</creatorcontrib><description>Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity--Hebbian and heterosynaptic--may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.5088-12.2013</identifier><identifier>PMID: 24089497</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Auditory Cortex - physiology ; Computer Simulation ; Excitatory Postsynaptic Potentials - physiology ; Models, Neurological ; Neuronal Plasticity - physiology ; Neurons - physiology ; Rats ; Rats, Wistar ; Synapses - physiology ; Synaptic Transmission - physiology ; Visual Cortex - physiology</subject><ispartof>The Journal of neuroscience, 2013-10, Vol.33 (40), p.15915-15929</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3315915-15$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-158e782b673c373d7112a54142ee626911b2dbec4e8521c7fcefdfb52805f8143</citedby><cites>FETCH-LOGICAL-c513t-158e782b673c373d7112a54142ee626911b2dbec4e8521c7fcefdfb52805f8143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787503/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787503/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24089497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jen-Yung</creatorcontrib><creatorcontrib>Lonjers, Peter</creatorcontrib><creatorcontrib>Lee, Christopher</creatorcontrib><creatorcontrib>Chistiakova, Marina</creatorcontrib><creatorcontrib>Volgushev, Maxim</creatorcontrib><creatorcontrib>Bazhenov, Maxim</creatorcontrib><title>Heterosynaptic plasticity prevents runaway synaptic dynamics</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity--Hebbian and heterosynaptic--may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Auditory Cortex - physiology</subject><subject>Computer Simulation</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Models, Neurological</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Visual Cortex - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9Lw0AQxRdRbK1-hdKjl9Sd_ZPdgAhSqq2IBbXnZbPZaCRNYjap5Nu7pTXoydMMvDePmfkhNAY8BU7o1cPTfP28epktpxxLGQCZEgz0CA29GgWEYThGQ0wEDkIm2ACdOfeBMRYYxCkaeF1GLBJDdL2wja1L1xW6ajIzqXLtfM2ablLVdmuLxk3qttBfupv0psQ3m8y4c3SS6tzZi0MdofXd_HW2CB5X98vZ7WNgONAmAC6tkCQOBTVU0EQAEM0ZMGJtSMIIICZJbA2zkhMwIjU2TdKYE4l5KoHREbrZ51ZtvLGJ8VvVOldVnW103alSZ-qvUmTv6q3cKiqk4Jj6gMtDQF1-ttY1apM5Y_NcF7ZsnQLOIaQgBfxvZYwyzCKQ3hrurcY_0NU27TcCrHaUVE9J7SgpIGpHyQ-Of9_Tj_1god9X0pAZ</recordid><startdate>20131002</startdate><enddate>20131002</enddate><creator>Chen, Jen-Yung</creator><creator>Lonjers, Peter</creator><creator>Lee, Christopher</creator><creator>Chistiakova, Marina</creator><creator>Volgushev, Maxim</creator><creator>Bazhenov, Maxim</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131002</creationdate><title>Heterosynaptic plasticity prevents runaway synaptic dynamics</title><author>Chen, Jen-Yung ; Lonjers, Peter ; Lee, Christopher ; Chistiakova, Marina ; Volgushev, Maxim ; Bazhenov, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-158e782b673c373d7112a54142ee626911b2dbec4e8521c7fcefdfb52805f8143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Auditory Cortex - physiology</topic><topic>Computer Simulation</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Models, Neurological</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jen-Yung</creatorcontrib><creatorcontrib>Lonjers, Peter</creatorcontrib><creatorcontrib>Lee, Christopher</creatorcontrib><creatorcontrib>Chistiakova, Marina</creatorcontrib><creatorcontrib>Volgushev, Maxim</creatorcontrib><creatorcontrib>Bazhenov, Maxim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jen-Yung</au><au>Lonjers, Peter</au><au>Lee, Christopher</au><au>Chistiakova, Marina</au><au>Volgushev, Maxim</au><au>Bazhenov, Maxim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterosynaptic plasticity prevents runaway synaptic dynamics</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-10-02</date><risdate>2013</risdate><volume>33</volume><issue>40</issue><spage>15915</spage><epage>15929</epage><pages>15915-15929</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity--Hebbian and heterosynaptic--may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24089497</pmid><doi>10.1523/JNEUROSCI.5088-12.2013</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-10, Vol.33 (40), p.15915-15929
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3787503
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Action Potentials - physiology
Animals
Auditory Cortex - physiology
Computer Simulation
Excitatory Postsynaptic Potentials - physiology
Models, Neurological
Neuronal Plasticity - physiology
Neurons - physiology
Rats
Rats, Wistar
Synapses - physiology
Synaptic Transmission - physiology
Visual Cortex - physiology
title Heterosynaptic plasticity prevents runaway synaptic dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterosynaptic%20plasticity%20prevents%20runaway%20synaptic%20dynamics&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Chen,%20Jen-Yung&rft.date=2013-10-02&rft.volume=33&rft.issue=40&rft.spage=15915&rft.epage=15929&rft.pages=15915-15929&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.5088-12.2013&rft_dat=%3Cproquest_pubme%3E1443404918%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443404918&rft_id=info:pmid/24089497&rfr_iscdi=true