Towards high resolution analysis of metabolic flux in cells and tissues

•The metabolic state of a cell is an important determinant of cellular phenotype.•Current methods for global metabolic flux quantification characterize bulk behavior.•Genome-scale models offer promise for analyses involving multiple cell types.•Advances in metabolic imaging could afford spatiotempor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in biotechnology 2013-10, Vol.24 (5), p.933-939
Hauptverfasser: Sims, James K, Manteiga, Sara, Lee, Kyongbum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 939
container_issue 5
container_start_page 933
container_title Current opinion in biotechnology
container_volume 24
creator Sims, James K
Manteiga, Sara
Lee, Kyongbum
description •The metabolic state of a cell is an important determinant of cellular phenotype.•Current methods for global metabolic flux quantification characterize bulk behavior.•Genome-scale models offer promise for analyses involving multiple cell types.•Advances in metabolic imaging could afford spatiotemporally resolved analysis. Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism
doi_str_mv 10.1016/j.copbio.2013.07.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3783555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958166913006071</els_id><sourcerecordid>1436564299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-5b8b5e0528359b4f55fd8df9828698e0448503d70092d32e90734c41f68978853</originalsourceid><addsrcrecordid>eNqFkk9vEzEQxVcIREPhGyDYI5cs4__2BQlV0CJV4tD2bHm93sTBWQd7tyXfHm8TKuCSkw_-zZt586aq3iJoECD-cdPYuGt9bDAg0oBoANCzaoGkUEugWD2vFqCYXCLO1Vn1KucNADAi4GV1hokCrjBfVJe38cGkLtdrv1rXyeUYptHHoTaDCfvscx37eutG08bgbd2H6Vfth9q6EHJhunr0OU8uv65e9CZk9-b4nld3X7_cXlwtr79ffrv4fL20XNBxyVrZMgcMS8JUS3vG-k52vZJYciUdUCoZkE4AKNwR7BQIQi1FPZdKSMnIefXpoLub2q3rrBvGZILeJb81aa-j8frfn8Gv9SreayJKSzYLfDgKpPizDD7qrc-zHTO4OGWNy5agdKL8JIoYB4Qwp-Q0SglnvKSiCkoPqE0x5-T6p-ER6DlZvdGHZPWcrAahS7Kl7N3fxp-K_kRZgPcHoDdRm1XyWd_dFAVe_GAmH4nj7lwJ6N67pLP1brCu88nZUXfRn5rhfwEb_OCtCT_c3uVNnFK5muJWZ6xB38z3N58fIgAcBCK_ATeL0xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1436564299</pqid></control><display><type>article</type><title>Towards high resolution analysis of metabolic flux in cells and tissues</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sims, James K ; Manteiga, Sara ; Lee, Kyongbum</creator><creatorcontrib>Sims, James K ; Manteiga, Sara ; Lee, Kyongbum</creatorcontrib><description>•The metabolic state of a cell is an important determinant of cellular phenotype.•Current methods for global metabolic flux quantification characterize bulk behavior.•Genome-scale models offer promise for analyses involving multiple cell types.•Advances in metabolic imaging could afford spatiotemporally resolved analysis. Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism</description><identifier>ISSN: 0958-1669</identifier><identifier>EISSN: 1879-0429</identifier><identifier>DOI: 10.1016/j.copbio.2013.07.001</identifier><identifier>PMID: 23906926</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; biosynthesis ; Cells - metabolism ; energy ; Genomics ; Humans ; image analysis ; Internal Medicine ; liver ; mammals ; Mammals - metabolism ; Metabolism ; Metabolomics ; Molecular Imaging ; muscles ; neurons ; nutrients ; Organ Specificity ; phenotype ; Single-Cell Analysis ; Spatio-Temporal Analysis ; tissues</subject><ispartof>Current opinion in biotechnology, 2013-10, Vol.24 (5), p.933-939</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-5b8b5e0528359b4f55fd8df9828698e0448503d70092d32e90734c41f68978853</citedby><cites>FETCH-LOGICAL-c674t-5b8b5e0528359b4f55fd8df9828698e0448503d70092d32e90734c41f68978853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0958166913006071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23906926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sims, James K</creatorcontrib><creatorcontrib>Manteiga, Sara</creatorcontrib><creatorcontrib>Lee, Kyongbum</creatorcontrib><title>Towards high resolution analysis of metabolic flux in cells and tissues</title><title>Current opinion in biotechnology</title><addtitle>Curr Opin Biotechnol</addtitle><description>•The metabolic state of a cell is an important determinant of cellular phenotype.•Current methods for global metabolic flux quantification characterize bulk behavior.•Genome-scale models offer promise for analyses involving multiple cell types.•Advances in metabolic imaging could afford spatiotemporally resolved analysis. Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism</description><subject>Animals</subject><subject>biosynthesis</subject><subject>Cells - metabolism</subject><subject>energy</subject><subject>Genomics</subject><subject>Humans</subject><subject>image analysis</subject><subject>Internal Medicine</subject><subject>liver</subject><subject>mammals</subject><subject>Mammals - metabolism</subject><subject>Metabolism</subject><subject>Metabolomics</subject><subject>Molecular Imaging</subject><subject>muscles</subject><subject>neurons</subject><subject>nutrients</subject><subject>Organ Specificity</subject><subject>phenotype</subject><subject>Single-Cell Analysis</subject><subject>Spatio-Temporal Analysis</subject><subject>tissues</subject><issn>0958-1669</issn><issn>1879-0429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9vEzEQxVcIREPhGyDYI5cs4__2BQlV0CJV4tD2bHm93sTBWQd7tyXfHm8TKuCSkw_-zZt586aq3iJoECD-cdPYuGt9bDAg0oBoANCzaoGkUEugWD2vFqCYXCLO1Vn1KucNADAi4GV1hokCrjBfVJe38cGkLtdrv1rXyeUYptHHoTaDCfvscx37eutG08bgbd2H6Vfth9q6EHJhunr0OU8uv65e9CZk9-b4nld3X7_cXlwtr79ffrv4fL20XNBxyVrZMgcMS8JUS3vG-k52vZJYciUdUCoZkE4AKNwR7BQIQi1FPZdKSMnIefXpoLub2q3rrBvGZILeJb81aa-j8frfn8Gv9SreayJKSzYLfDgKpPizDD7qrc-zHTO4OGWNy5agdKL8JIoYB4Qwp-Q0SglnvKSiCkoPqE0x5-T6p-ER6DlZvdGHZPWcrAahS7Kl7N3fxp-K_kRZgPcHoDdRm1XyWd_dFAVe_GAmH4nj7lwJ6N67pLP1brCu88nZUXfRn5rhfwEb_OCtCT_c3uVNnFK5muJWZ6xB38z3N58fIgAcBCK_ATeL0xg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Sims, James K</creator><creator>Manteiga, Sara</creator><creator>Lee, Kyongbum</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Towards high resolution analysis of metabolic flux in cells and tissues</title><author>Sims, James K ; Manteiga, Sara ; Lee, Kyongbum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-5b8b5e0528359b4f55fd8df9828698e0448503d70092d32e90734c41f68978853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>biosynthesis</topic><topic>Cells - metabolism</topic><topic>energy</topic><topic>Genomics</topic><topic>Humans</topic><topic>image analysis</topic><topic>Internal Medicine</topic><topic>liver</topic><topic>mammals</topic><topic>Mammals - metabolism</topic><topic>Metabolism</topic><topic>Metabolomics</topic><topic>Molecular Imaging</topic><topic>muscles</topic><topic>neurons</topic><topic>nutrients</topic><topic>Organ Specificity</topic><topic>phenotype</topic><topic>Single-Cell Analysis</topic><topic>Spatio-Temporal Analysis</topic><topic>tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sims, James K</creatorcontrib><creatorcontrib>Manteiga, Sara</creatorcontrib><creatorcontrib>Lee, Kyongbum</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sims, James K</au><au>Manteiga, Sara</au><au>Lee, Kyongbum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards high resolution analysis of metabolic flux in cells and tissues</atitle><jtitle>Current opinion in biotechnology</jtitle><addtitle>Curr Opin Biotechnol</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>24</volume><issue>5</issue><spage>933</spage><epage>939</epage><pages>933-939</pages><issn>0958-1669</issn><eissn>1879-0429</eissn><abstract>•The metabolic state of a cell is an important determinant of cellular phenotype.•Current methods for global metabolic flux quantification characterize bulk behavior.•Genome-scale models offer promise for analyses involving multiple cell types.•Advances in metabolic imaging could afford spatiotemporally resolved analysis. Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23906926</pmid><doi>10.1016/j.copbio.2013.07.001</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-1669
ispartof Current opinion in biotechnology, 2013-10, Vol.24 (5), p.933-939
issn 0958-1669
1879-0429
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3783555
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
biosynthesis
Cells - metabolism
energy
Genomics
Humans
image analysis
Internal Medicine
liver
mammals
Mammals - metabolism
Metabolism
Metabolomics
Molecular Imaging
muscles
neurons
nutrients
Organ Specificity
phenotype
Single-Cell Analysis
Spatio-Temporal Analysis
tissues
title Towards high resolution analysis of metabolic flux in cells and tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T19%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20high%20resolution%20analysis%20of%20metabolic%20flux%20in%20cells%20and%20tissues&rft.jtitle=Current%20opinion%20in%20biotechnology&rft.au=Sims,%20James%20K&rft.date=2013-10-01&rft.volume=24&rft.issue=5&rft.spage=933&rft.epage=939&rft.pages=933-939&rft.issn=0958-1669&rft.eissn=1879-0429&rft_id=info:doi/10.1016/j.copbio.2013.07.001&rft_dat=%3Cproquest_pubme%3E1436564299%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1436564299&rft_id=info:pmid/23906926&rft_els_id=S0958166913006071&rfr_iscdi=true