Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells
Dendritic cells (DCs) comprise distinct populations with specialized immune-regulatory functions. However, the environmental factors that determine the differentiation of these subsets remain poorly defined. Here, we report that retinoic acid (RA), a vitamin A derivative, controls the homeostasis of...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2013-09, Vol.210 (10), p.1961-1976 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1976 |
---|---|
container_issue | 10 |
container_start_page | 1961 |
container_title | The Journal of experimental medicine |
container_volume | 210 |
creator | Klebanoff, Christopher A Spencer, Sean P Torabi-Parizi, Parizad Grainger, John R Roychoudhuri, Rahul Ji, Yun Sukumar, Madhusudhanan Muranski, Pawel Scott, Christopher D Hall, Jason A Ferreyra, Gabriela A Leonardi, Anthony J Borman, Zachary A Wang, Jinshan Palmer, Douglas C Wilhelm, Christoph Cai, Rongman Sun, Junfeng Napoli, Joseph L Danner, Robert L Gattinoni, Luca Belkaid, Yasmine Restifo, Nicholas P |
description | Dendritic cells (DCs) comprise distinct populations with specialized immune-regulatory functions. However, the environmental factors that determine the differentiation of these subsets remain poorly defined. Here, we report that retinoic acid (RA), a vitamin A derivative, controls the homeostasis of pre-DC (precursor of DC)-derived splenic CD11b(+)CD8α(-)Esam(high) DCs and the developmentally related CD11b(+)CD103(+) subset within the gut. Whereas mice deprived of RA signaling significantly lost both of these populations, neither pre-DC-derived CD11b(-)CD8α(+) and CD11b(-)CD103(+) nor monocyte-derived CD11b(+)CD8α(-)Esam(low) or CD11b(+)CD103(-) DC populations were deficient. In fate-tracking experiments, transfer of pre-DCs into RA-supplemented hosts resulted in near complete conversion of these cells into the CD11b(+)CD8α(-) subset, whereas transfer into vitamin A-deficient (VAD) hosts caused diversion to the CD11b(-)CD8α(+) lineage. As vitamin A is an essential nutrient, we evaluated retinoid levels in mice and humans after radiation-induced mucosal injury and found this conditioning led to an acute VAD state. Consequently, radiation led to a selective loss of both RA-dependent DC subsets and impaired class II-restricted auto and antitumor immunity that could be rescued by supplemental RA. These findings establish a critical role for RA in regulating the homeostasis of pre-DC-derived DC subsets and have implications for the management of patients with immune deficiencies resulting from malnutrition and irradiation. |
doi_str_mv | 10.1084/jem.20122508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3782040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551643592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-9bdf2fe819ae989c59c6b1e75bd4db4ed74c8d2d133b7cc71641fff04f353f173</originalsourceid><addsrcrecordid>eNpVkUtLBDEQhIMouj5uniVHD47muTO5CLI-QRBEzzGTdNzIzGRNZgX_vVlWRU99qK-ruyiEDik5paQRZ2_QnzJCGZOk2UATKgWplOTNJpoQwlhFCal30G7Ob4RQIeR0G-0wrpQSSk3QyyOMYYjBYmODwzYOY4pdxuMc8Dz2EPNocsg4erxIUNnLWeUghQ9wOC86GFaLg8NhGCEXI9NhB4NLYSyCha7L-2jLmy7DwffcQ8_XV0-z2-r-4eZudnFfWdHwsVKt88xDQ5UB1SgrlZ22FGrZOuFaAa4WtnHMUc7b2tqaTgX13hPhueSe1nwPna99F8u2B2ehBDGdXqTQm_Spown6vzKEuX6NH5rXDSOCFIPjb4MU35clje5DXkUwA8Rl1lTKcpRLxQp6skZtijkn8L9nKNGrUnQpRf-UUvCjv6_9wj8t8C8GrYrp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551643592</pqid></control><display><type>article</type><title>Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Klebanoff, Christopher A ; Spencer, Sean P ; Torabi-Parizi, Parizad ; Grainger, John R ; Roychoudhuri, Rahul ; Ji, Yun ; Sukumar, Madhusudhanan ; Muranski, Pawel ; Scott, Christopher D ; Hall, Jason A ; Ferreyra, Gabriela A ; Leonardi, Anthony J ; Borman, Zachary A ; Wang, Jinshan ; Palmer, Douglas C ; Wilhelm, Christoph ; Cai, Rongman ; Sun, Junfeng ; Napoli, Joseph L ; Danner, Robert L ; Gattinoni, Luca ; Belkaid, Yasmine ; Restifo, Nicholas P</creator><creatorcontrib>Klebanoff, Christopher A ; Spencer, Sean P ; Torabi-Parizi, Parizad ; Grainger, John R ; Roychoudhuri, Rahul ; Ji, Yun ; Sukumar, Madhusudhanan ; Muranski, Pawel ; Scott, Christopher D ; Hall, Jason A ; Ferreyra, Gabriela A ; Leonardi, Anthony J ; Borman, Zachary A ; Wang, Jinshan ; Palmer, Douglas C ; Wilhelm, Christoph ; Cai, Rongman ; Sun, Junfeng ; Napoli, Joseph L ; Danner, Robert L ; Gattinoni, Luca ; Belkaid, Yasmine ; Restifo, Nicholas P</creatorcontrib><description>Dendritic cells (DCs) comprise distinct populations with specialized immune-regulatory functions. However, the environmental factors that determine the differentiation of these subsets remain poorly defined. Here, we report that retinoic acid (RA), a vitamin A derivative, controls the homeostasis of pre-DC (precursor of DC)-derived splenic CD11b(+)CD8α(-)Esam(high) DCs and the developmentally related CD11b(+)CD103(+) subset within the gut. Whereas mice deprived of RA signaling significantly lost both of these populations, neither pre-DC-derived CD11b(-)CD8α(+) and CD11b(-)CD103(+) nor monocyte-derived CD11b(+)CD8α(-)Esam(low) or CD11b(+)CD103(-) DC populations were deficient. In fate-tracking experiments, transfer of pre-DCs into RA-supplemented hosts resulted in near complete conversion of these cells into the CD11b(+)CD8α(-) subset, whereas transfer into vitamin A-deficient (VAD) hosts caused diversion to the CD11b(-)CD8α(+) lineage. As vitamin A is an essential nutrient, we evaluated retinoid levels in mice and humans after radiation-induced mucosal injury and found this conditioning led to an acute VAD state. Consequently, radiation led to a selective loss of both RA-dependent DC subsets and impaired class II-restricted auto and antitumor immunity that could be rescued by supplemental RA. These findings establish a critical role for RA in regulating the homeostasis of pre-DC-derived DC subsets and have implications for the management of patients with immune deficiencies resulting from malnutrition and irradiation.</description><identifier>ISSN: 0022-1007</identifier><identifier>EISSN: 1540-9538</identifier><identifier>DOI: 10.1084/jem.20122508</identifier><identifier>PMID: 23999499</identifier><language>eng</language><publisher>United States: The Rockefeller University Press</publisher><subject>Animals ; Cell Differentiation - immunology ; Cell Proliferation ; Cell Survival ; Dendritic Cells - cytology ; Dendritic Cells - immunology ; Dendritic Cells - metabolism ; Dendritic Cells - radiation effects ; Female ; Histocompatibility Antigens Class II - immunology ; Homeostasis - immunology ; Humans ; Immunophenotyping ; Intestines - immunology ; Intestines - metabolism ; Intestines - radiation effects ; Mice ; Neoplasms - immunology ; Neoplasms - metabolism ; Organ Specificity - immunology ; Phenotype ; Receptors, Retinoic Acid - metabolism ; Signal Transduction ; Spleen - immunology ; Spleen - metabolism ; Spleen - radiation effects ; Tretinoin - metabolism ; Vitamin A - metabolism ; Whole-Body Irradiation - adverse effects</subject><ispartof>The Journal of experimental medicine, 2013-09, Vol.210 (10), p.1961-1976</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-9bdf2fe819ae989c59c6b1e75bd4db4ed74c8d2d133b7cc71641fff04f353f173</citedby><cites>FETCH-LOGICAL-c483t-9bdf2fe819ae989c59c6b1e75bd4db4ed74c8d2d133b7cc71641fff04f353f173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23999499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klebanoff, Christopher A</creatorcontrib><creatorcontrib>Spencer, Sean P</creatorcontrib><creatorcontrib>Torabi-Parizi, Parizad</creatorcontrib><creatorcontrib>Grainger, John R</creatorcontrib><creatorcontrib>Roychoudhuri, Rahul</creatorcontrib><creatorcontrib>Ji, Yun</creatorcontrib><creatorcontrib>Sukumar, Madhusudhanan</creatorcontrib><creatorcontrib>Muranski, Pawel</creatorcontrib><creatorcontrib>Scott, Christopher D</creatorcontrib><creatorcontrib>Hall, Jason A</creatorcontrib><creatorcontrib>Ferreyra, Gabriela A</creatorcontrib><creatorcontrib>Leonardi, Anthony J</creatorcontrib><creatorcontrib>Borman, Zachary A</creatorcontrib><creatorcontrib>Wang, Jinshan</creatorcontrib><creatorcontrib>Palmer, Douglas C</creatorcontrib><creatorcontrib>Wilhelm, Christoph</creatorcontrib><creatorcontrib>Cai, Rongman</creatorcontrib><creatorcontrib>Sun, Junfeng</creatorcontrib><creatorcontrib>Napoli, Joseph L</creatorcontrib><creatorcontrib>Danner, Robert L</creatorcontrib><creatorcontrib>Gattinoni, Luca</creatorcontrib><creatorcontrib>Belkaid, Yasmine</creatorcontrib><creatorcontrib>Restifo, Nicholas P</creatorcontrib><title>Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells</title><title>The Journal of experimental medicine</title><addtitle>J Exp Med</addtitle><description>Dendritic cells (DCs) comprise distinct populations with specialized immune-regulatory functions. However, the environmental factors that determine the differentiation of these subsets remain poorly defined. Here, we report that retinoic acid (RA), a vitamin A derivative, controls the homeostasis of pre-DC (precursor of DC)-derived splenic CD11b(+)CD8α(-)Esam(high) DCs and the developmentally related CD11b(+)CD103(+) subset within the gut. Whereas mice deprived of RA signaling significantly lost both of these populations, neither pre-DC-derived CD11b(-)CD8α(+) and CD11b(-)CD103(+) nor monocyte-derived CD11b(+)CD8α(-)Esam(low) or CD11b(+)CD103(-) DC populations were deficient. In fate-tracking experiments, transfer of pre-DCs into RA-supplemented hosts resulted in near complete conversion of these cells into the CD11b(+)CD8α(-) subset, whereas transfer into vitamin A-deficient (VAD) hosts caused diversion to the CD11b(-)CD8α(+) lineage. As vitamin A is an essential nutrient, we evaluated retinoid levels in mice and humans after radiation-induced mucosal injury and found this conditioning led to an acute VAD state. Consequently, radiation led to a selective loss of both RA-dependent DC subsets and impaired class II-restricted auto and antitumor immunity that could be rescued by supplemental RA. These findings establish a critical role for RA in regulating the homeostasis of pre-DC-derived DC subsets and have implications for the management of patients with immune deficiencies resulting from malnutrition and irradiation.</description><subject>Animals</subject><subject>Cell Differentiation - immunology</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Dendritic Cells - cytology</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - metabolism</subject><subject>Dendritic Cells - radiation effects</subject><subject>Female</subject><subject>Histocompatibility Antigens Class II - immunology</subject><subject>Homeostasis - immunology</subject><subject>Humans</subject><subject>Immunophenotyping</subject><subject>Intestines - immunology</subject><subject>Intestines - metabolism</subject><subject>Intestines - radiation effects</subject><subject>Mice</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - metabolism</subject><subject>Organ Specificity - immunology</subject><subject>Phenotype</subject><subject>Receptors, Retinoic Acid - metabolism</subject><subject>Signal Transduction</subject><subject>Spleen - immunology</subject><subject>Spleen - metabolism</subject><subject>Spleen - radiation effects</subject><subject>Tretinoin - metabolism</subject><subject>Vitamin A - metabolism</subject><subject>Whole-Body Irradiation - adverse effects</subject><issn>0022-1007</issn><issn>1540-9538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtLBDEQhIMouj5uniVHD47muTO5CLI-QRBEzzGTdNzIzGRNZgX_vVlWRU99qK-ruyiEDik5paQRZ2_QnzJCGZOk2UATKgWplOTNJpoQwlhFCal30G7Ob4RQIeR0G-0wrpQSSk3QyyOMYYjBYmODwzYOY4pdxuMc8Dz2EPNocsg4erxIUNnLWeUghQ9wOC86GFaLg8NhGCEXI9NhB4NLYSyCha7L-2jLmy7DwffcQ8_XV0-z2-r-4eZudnFfWdHwsVKt88xDQ5UB1SgrlZ22FGrZOuFaAa4WtnHMUc7b2tqaTgX13hPhueSe1nwPna99F8u2B2ehBDGdXqTQm_Spown6vzKEuX6NH5rXDSOCFIPjb4MU35clje5DXkUwA8Rl1lTKcpRLxQp6skZtijkn8L9nKNGrUnQpRf-UUvCjv6_9wj8t8C8GrYrp</recordid><startdate>20130923</startdate><enddate>20130923</enddate><creator>Klebanoff, Christopher A</creator><creator>Spencer, Sean P</creator><creator>Torabi-Parizi, Parizad</creator><creator>Grainger, John R</creator><creator>Roychoudhuri, Rahul</creator><creator>Ji, Yun</creator><creator>Sukumar, Madhusudhanan</creator><creator>Muranski, Pawel</creator><creator>Scott, Christopher D</creator><creator>Hall, Jason A</creator><creator>Ferreyra, Gabriela A</creator><creator>Leonardi, Anthony J</creator><creator>Borman, Zachary A</creator><creator>Wang, Jinshan</creator><creator>Palmer, Douglas C</creator><creator>Wilhelm, Christoph</creator><creator>Cai, Rongman</creator><creator>Sun, Junfeng</creator><creator>Napoli, Joseph L</creator><creator>Danner, Robert L</creator><creator>Gattinoni, Luca</creator><creator>Belkaid, Yasmine</creator><creator>Restifo, Nicholas P</creator><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20130923</creationdate><title>Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells</title><author>Klebanoff, Christopher A ; Spencer, Sean P ; Torabi-Parizi, Parizad ; Grainger, John R ; Roychoudhuri, Rahul ; Ji, Yun ; Sukumar, Madhusudhanan ; Muranski, Pawel ; Scott, Christopher D ; Hall, Jason A ; Ferreyra, Gabriela A ; Leonardi, Anthony J ; Borman, Zachary A ; Wang, Jinshan ; Palmer, Douglas C ; Wilhelm, Christoph ; Cai, Rongman ; Sun, Junfeng ; Napoli, Joseph L ; Danner, Robert L ; Gattinoni, Luca ; Belkaid, Yasmine ; Restifo, Nicholas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-9bdf2fe819ae989c59c6b1e75bd4db4ed74c8d2d133b7cc71641fff04f353f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Differentiation - immunology</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Dendritic Cells - cytology</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - metabolism</topic><topic>Dendritic Cells - radiation effects</topic><topic>Female</topic><topic>Histocompatibility Antigens Class II - immunology</topic><topic>Homeostasis - immunology</topic><topic>Humans</topic><topic>Immunophenotyping</topic><topic>Intestines - immunology</topic><topic>Intestines - metabolism</topic><topic>Intestines - radiation effects</topic><topic>Mice</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - metabolism</topic><topic>Organ Specificity - immunology</topic><topic>Phenotype</topic><topic>Receptors, Retinoic Acid - metabolism</topic><topic>Signal Transduction</topic><topic>Spleen - immunology</topic><topic>Spleen - metabolism</topic><topic>Spleen - radiation effects</topic><topic>Tretinoin - metabolism</topic><topic>Vitamin A - metabolism</topic><topic>Whole-Body Irradiation - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klebanoff, Christopher A</creatorcontrib><creatorcontrib>Spencer, Sean P</creatorcontrib><creatorcontrib>Torabi-Parizi, Parizad</creatorcontrib><creatorcontrib>Grainger, John R</creatorcontrib><creatorcontrib>Roychoudhuri, Rahul</creatorcontrib><creatorcontrib>Ji, Yun</creatorcontrib><creatorcontrib>Sukumar, Madhusudhanan</creatorcontrib><creatorcontrib>Muranski, Pawel</creatorcontrib><creatorcontrib>Scott, Christopher D</creatorcontrib><creatorcontrib>Hall, Jason A</creatorcontrib><creatorcontrib>Ferreyra, Gabriela A</creatorcontrib><creatorcontrib>Leonardi, Anthony J</creatorcontrib><creatorcontrib>Borman, Zachary A</creatorcontrib><creatorcontrib>Wang, Jinshan</creatorcontrib><creatorcontrib>Palmer, Douglas C</creatorcontrib><creatorcontrib>Wilhelm, Christoph</creatorcontrib><creatorcontrib>Cai, Rongman</creatorcontrib><creatorcontrib>Sun, Junfeng</creatorcontrib><creatorcontrib>Napoli, Joseph L</creatorcontrib><creatorcontrib>Danner, Robert L</creatorcontrib><creatorcontrib>Gattinoni, Luca</creatorcontrib><creatorcontrib>Belkaid, Yasmine</creatorcontrib><creatorcontrib>Restifo, Nicholas P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of experimental medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klebanoff, Christopher A</au><au>Spencer, Sean P</au><au>Torabi-Parizi, Parizad</au><au>Grainger, John R</au><au>Roychoudhuri, Rahul</au><au>Ji, Yun</au><au>Sukumar, Madhusudhanan</au><au>Muranski, Pawel</au><au>Scott, Christopher D</au><au>Hall, Jason A</au><au>Ferreyra, Gabriela A</au><au>Leonardi, Anthony J</au><au>Borman, Zachary A</au><au>Wang, Jinshan</au><au>Palmer, Douglas C</au><au>Wilhelm, Christoph</au><au>Cai, Rongman</au><au>Sun, Junfeng</au><au>Napoli, Joseph L</au><au>Danner, Robert L</au><au>Gattinoni, Luca</au><au>Belkaid, Yasmine</au><au>Restifo, Nicholas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells</atitle><jtitle>The Journal of experimental medicine</jtitle><addtitle>J Exp Med</addtitle><date>2013-09-23</date><risdate>2013</risdate><volume>210</volume><issue>10</issue><spage>1961</spage><epage>1976</epage><pages>1961-1976</pages><issn>0022-1007</issn><eissn>1540-9538</eissn><abstract>Dendritic cells (DCs) comprise distinct populations with specialized immune-regulatory functions. However, the environmental factors that determine the differentiation of these subsets remain poorly defined. Here, we report that retinoic acid (RA), a vitamin A derivative, controls the homeostasis of pre-DC (precursor of DC)-derived splenic CD11b(+)CD8α(-)Esam(high) DCs and the developmentally related CD11b(+)CD103(+) subset within the gut. Whereas mice deprived of RA signaling significantly lost both of these populations, neither pre-DC-derived CD11b(-)CD8α(+) and CD11b(-)CD103(+) nor monocyte-derived CD11b(+)CD8α(-)Esam(low) or CD11b(+)CD103(-) DC populations were deficient. In fate-tracking experiments, transfer of pre-DCs into RA-supplemented hosts resulted in near complete conversion of these cells into the CD11b(+)CD8α(-) subset, whereas transfer into vitamin A-deficient (VAD) hosts caused diversion to the CD11b(-)CD8α(+) lineage. As vitamin A is an essential nutrient, we evaluated retinoid levels in mice and humans after radiation-induced mucosal injury and found this conditioning led to an acute VAD state. Consequently, radiation led to a selective loss of both RA-dependent DC subsets and impaired class II-restricted auto and antitumor immunity that could be rescued by supplemental RA. These findings establish a critical role for RA in regulating the homeostasis of pre-DC-derived DC subsets and have implications for the management of patients with immune deficiencies resulting from malnutrition and irradiation.</abstract><cop>United States</cop><pub>The Rockefeller University Press</pub><pmid>23999499</pmid><doi>10.1084/jem.20122508</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1007 |
ispartof | The Journal of experimental medicine, 2013-09, Vol.210 (10), p.1961-1976 |
issn | 0022-1007 1540-9538 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3782040 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Cell Differentiation - immunology Cell Proliferation Cell Survival Dendritic Cells - cytology Dendritic Cells - immunology Dendritic Cells - metabolism Dendritic Cells - radiation effects Female Histocompatibility Antigens Class II - immunology Homeostasis - immunology Humans Immunophenotyping Intestines - immunology Intestines - metabolism Intestines - radiation effects Mice Neoplasms - immunology Neoplasms - metabolism Organ Specificity - immunology Phenotype Receptors, Retinoic Acid - metabolism Signal Transduction Spleen - immunology Spleen - metabolism Spleen - radiation effects Tretinoin - metabolism Vitamin A - metabolism Whole-Body Irradiation - adverse effects |
title | Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retinoic%20acid%20controls%20the%20homeostasis%20of%20pre-cDC-derived%20splenic%20and%20intestinal%20dendritic%20cells&rft.jtitle=The%20Journal%20of%20experimental%20medicine&rft.au=Klebanoff,%20Christopher%20A&rft.date=2013-09-23&rft.volume=210&rft.issue=10&rft.spage=1961&rft.epage=1976&rft.pages=1961-1976&rft.issn=0022-1007&rft.eissn=1540-9538&rft_id=info:doi/10.1084/jem.20122508&rft_dat=%3Cproquest_pubme%3E1551643592%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551643592&rft_id=info:pmid/23999499&rfr_iscdi=true |