Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death
Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins a...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2013-10, Vol.20 (10), p.1359-1369 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1369 |
---|---|
container_issue | 10 |
container_start_page | 1359 |
container_title | Cell death and differentiation |
container_volume | 20 |
creator | Wang, Y-Z Zeng, W-Z Xiao, X Huang, Y Song, X-L Yu, Z Tang, D Dong, X-P Zhu, M X Xu, T-L |
description | Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from
ASIC1a
−/−
mice exhibit significantly enhanced Ca
2+
retention capacity and accelerated Ca
2+
uptake rate. When challenged with hydrogen peroxide (H
2
O
2
),
ASIC1a
−/−
neurons are resistant to cytochrome
c
release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to
ASIC1a
deletion. Consistently, H
2
O
2
-induced neuronal death, which is MPT dependent, is reduced in
ASIC1a
−/−
neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in
ASIC1a
−/−
mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death. |
doi_str_mv | 10.1038/cdd.2013.90 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3770907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439236756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</originalsourceid><addsrcrecordid>eNqNkc2LFDEQxRtR3A89eZcGL8LaYyXpdDqXhWXwY2DBg3qUkE4qM1m6kzHpFva_N-OsyyoePFWK98tLql5VvSCwIsD6t8baFQXCVhIeVaekFV3DW2CPy5lxaCS04qQ6y_kGADohu6fVCWU9p0yQ0-rbJsxJGxzHZdSpvvq8WRNdJ9yWdsZcT36OZheDTV6P9R7ThHrwo59v63IvZD_7GBqLewwWw1wHXFIMBbWo592z6onTY8bnd_W8-vr-3Zf1x-b604fN-uq6Ma2Qc9NTAwNoTjsimODAgHHO0ZnW9IZrh4OlZGB0EEbw1oHTThJHLXBprKMdO68uj777ZZjQGjwMNap98pNOtypqr_5Ugt-pbfyhmBAgQRSD13cGKX5fMM9q8vmwFR0wLlmRlknKOsG7_0EJlawDWtBXf6E3cUllO78o6HvgjBXq4kiZFHNO6O7_TUAdElYlYXVIWEko9MuHo96zvyMtwJsjkIsUtpgePPoPv5-re7F5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430880533</pqid></control><display><type>article</type><title>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Y-Z ; Zeng, W-Z ; Xiao, X ; Huang, Y ; Song, X-L ; Yu, Z ; Tang, D ; Dong, X-P ; Zhu, M X ; Xu, T-L</creator><creatorcontrib>Wang, Y-Z ; Zeng, W-Z ; Xiao, X ; Huang, Y ; Song, X-L ; Yu, Z ; Tang, D ; Dong, X-P ; Zhu, M X ; Xu, T-L</creatorcontrib><description>Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from
ASIC1a
−/−
mice exhibit significantly enhanced Ca
2+
retention capacity and accelerated Ca
2+
uptake rate. When challenged with hydrogen peroxide (H
2
O
2
),
ASIC1a
−/−
neurons are resistant to cytochrome
c
release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to
ASIC1a
deletion. Consistently, H
2
O
2
-induced neuronal death, which is MPT dependent, is reduced in
ASIC1a
−/−
neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in
ASIC1a
−/−
mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2013.90</identifier><identifier>PMID: 23852371</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/82 ; 631/80/86 ; 692/699/375/1345 ; Acid Sensing Ion Channels - metabolism ; Acidosis ; Animals ; Apoptosis ; Biochemistry ; Biology ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell Death - physiology ; Cells, Cultured ; Cerebral Cortex - cytology ; Cytochrome ; Dehydrogenases ; Embryology ; Hydrogen peroxide ; Ischemia ; Kinases ; Life Sciences ; Medicine ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Neurological disorders ; Neurons - cytology ; Neurons - metabolism ; Neurosciences ; Original Paper ; Oxidative stress ; Oxidative Stress - physiology ; Permeability ; Proteins ; Reactive Oxygen Species - metabolism ; Stem Cells</subject><ispartof>Cell death and differentiation, 2013-10, Vol.20 (10), p.1359-1369</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>Copyright Nature Publishing Group Oct 2013</rights><rights>Copyright © 2013 Macmillan Publishers Limited 2013 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</citedby><cites>FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770907/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770907/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23852371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Y-Z</creatorcontrib><creatorcontrib>Zeng, W-Z</creatorcontrib><creatorcontrib>Xiao, X</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Song, X-L</creatorcontrib><creatorcontrib>Yu, Z</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><creatorcontrib>Dong, X-P</creatorcontrib><creatorcontrib>Zhu, M X</creatorcontrib><creatorcontrib>Xu, T-L</creatorcontrib><title>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from
ASIC1a
−/−
mice exhibit significantly enhanced Ca
2+
retention capacity and accelerated Ca
2+
uptake rate. When challenged with hydrogen peroxide (H
2
O
2
),
ASIC1a
−/−
neurons are resistant to cytochrome
c
release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to
ASIC1a
deletion. Consistently, H
2
O
2
-induced neuronal death, which is MPT dependent, is reduced in
ASIC1a
−/−
neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in
ASIC1a
−/−
mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.</description><subject>631/80/82</subject><subject>631/80/86</subject><subject>692/699/375/1345</subject><subject>Acid Sensing Ion Channels - metabolism</subject><subject>Acidosis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell Death - physiology</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cytochrome</subject><subject>Dehydrogenases</subject><subject>Embryology</subject><subject>Hydrogen peroxide</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Neurological disorders</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - physiology</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stem Cells</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2LFDEQxRtR3A89eZcGL8LaYyXpdDqXhWXwY2DBg3qUkE4qM1m6kzHpFva_N-OsyyoePFWK98tLql5VvSCwIsD6t8baFQXCVhIeVaekFV3DW2CPy5lxaCS04qQ6y_kGADohu6fVCWU9p0yQ0-rbJsxJGxzHZdSpvvq8WRNdJ9yWdsZcT36OZheDTV6P9R7ThHrwo59v63IvZD_7GBqLewwWw1wHXFIMBbWo592z6onTY8bnd_W8-vr-3Zf1x-b604fN-uq6Ma2Qc9NTAwNoTjsimODAgHHO0ZnW9IZrh4OlZGB0EEbw1oHTThJHLXBprKMdO68uj777ZZjQGjwMNap98pNOtypqr_5Ugt-pbfyhmBAgQRSD13cGKX5fMM9q8vmwFR0wLlmRlknKOsG7_0EJlawDWtBXf6E3cUllO78o6HvgjBXq4kiZFHNO6O7_TUAdElYlYXVIWEko9MuHo96zvyMtwJsjkIsUtpgePPoPv5-re7F5</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wang, Y-Z</creator><creator>Zeng, W-Z</creator><creator>Xiao, X</creator><creator>Huang, Y</creator><creator>Song, X-L</creator><creator>Yu, Z</creator><creator>Tang, D</creator><creator>Dong, X-P</creator><creator>Zhu, M X</creator><creator>Xu, T-L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</title><author>Wang, Y-Z ; Zeng, W-Z ; Xiao, X ; Huang, Y ; Song, X-L ; Yu, Z ; Tang, D ; Dong, X-P ; Zhu, M X ; Xu, T-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/80/82</topic><topic>631/80/86</topic><topic>692/699/375/1345</topic><topic>Acid Sensing Ion Channels - metabolism</topic><topic>Acidosis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell Death - physiology</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cytochrome</topic><topic>Dehydrogenases</topic><topic>Embryology</topic><topic>Hydrogen peroxide</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Neurological disorders</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - physiology</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Y-Z</creatorcontrib><creatorcontrib>Zeng, W-Z</creatorcontrib><creatorcontrib>Xiao, X</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Song, X-L</creatorcontrib><creatorcontrib>Yu, Z</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><creatorcontrib>Dong, X-P</creatorcontrib><creatorcontrib>Zhu, M X</creatorcontrib><creatorcontrib>Xu, T-L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Y-Z</au><au>Zeng, W-Z</au><au>Xiao, X</au><au>Huang, Y</au><au>Song, X-L</au><au>Yu, Z</au><au>Tang, D</au><au>Dong, X-P</au><au>Zhu, M X</au><au>Xu, T-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>20</volume><issue>10</issue><spage>1359</spage><epage>1369</epage><pages>1359-1369</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from
ASIC1a
−/−
mice exhibit significantly enhanced Ca
2+
retention capacity and accelerated Ca
2+
uptake rate. When challenged with hydrogen peroxide (H
2
O
2
),
ASIC1a
−/−
neurons are resistant to cytochrome
c
release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to
ASIC1a
deletion. Consistently, H
2
O
2
-induced neuronal death, which is MPT dependent, is reduced in
ASIC1a
−/−
neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in
ASIC1a
−/−
mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23852371</pmid><doi>10.1038/cdd.2013.90</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2013-10, Vol.20 (10), p.1359-1369 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3770907 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | 631/80/82 631/80/86 692/699/375/1345 Acid Sensing Ion Channels - metabolism Acidosis Animals Apoptosis Biochemistry Biology Biomedical and Life Sciences Cell Biology Cell Cycle Analysis Cell death Cell Death - physiology Cells, Cultured Cerebral Cortex - cytology Cytochrome Dehydrogenases Embryology Hydrogen peroxide Ischemia Kinases Life Sciences Medicine Mice Mice, Knockout Mitochondria Mitochondria - metabolism Neurological disorders Neurons - cytology Neurons - metabolism Neurosciences Original Paper Oxidative stress Oxidative Stress - physiology Permeability Proteins Reactive Oxygen Species - metabolism Stem Cells |
title | Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20ASIC1a%20regulates%20mitochondrial%20permeability%20transition-dependent%20neuronal%20death&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Wang,%20Y-Z&rft.date=2013-10-01&rft.volume=20&rft.issue=10&rft.spage=1359&rft.epage=1369&rft.pages=1359-1369&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2013.90&rft_dat=%3Cproquest_pubme%3E1439236756%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430880533&rft_id=info:pmid/23852371&rfr_iscdi=true |