Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death

Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2013-10, Vol.20 (10), p.1359-1369
Hauptverfasser: Wang, Y-Z, Zeng, W-Z, Xiao, X, Huang, Y, Song, X-L, Yu, Z, Tang, D, Dong, X-P, Zhu, M X, Xu, T-L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1369
container_issue 10
container_start_page 1359
container_title Cell death and differentiation
container_volume 20
creator Wang, Y-Z
Zeng, W-Z
Xiao, X
Huang, Y
Song, X-L
Yu, Z
Tang, D
Dong, X-P
Zhu, M X
Xu, T-L
description Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from ASIC1a −/− mice exhibit significantly enhanced Ca 2+ retention capacity and accelerated Ca 2+ uptake rate. When challenged with hydrogen peroxide (H 2 O 2 ), ASIC1a −/− neurons are resistant to cytochrome c release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to ASIC1a deletion. Consistently, H 2 O 2 -induced neuronal death, which is MPT dependent, is reduced in ASIC1a −/− neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in ASIC1a −/− mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.
doi_str_mv 10.1038/cdd.2013.90
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3770907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439236756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</originalsourceid><addsrcrecordid>eNqNkc2LFDEQxRtR3A89eZcGL8LaYyXpdDqXhWXwY2DBg3qUkE4qM1m6kzHpFva_N-OsyyoePFWK98tLql5VvSCwIsD6t8baFQXCVhIeVaekFV3DW2CPy5lxaCS04qQ6y_kGADohu6fVCWU9p0yQ0-rbJsxJGxzHZdSpvvq8WRNdJ9yWdsZcT36OZheDTV6P9R7ThHrwo59v63IvZD_7GBqLewwWw1wHXFIMBbWo592z6onTY8bnd_W8-vr-3Zf1x-b604fN-uq6Ma2Qc9NTAwNoTjsimODAgHHO0ZnW9IZrh4OlZGB0EEbw1oHTThJHLXBprKMdO68uj777ZZjQGjwMNap98pNOtypqr_5Ugt-pbfyhmBAgQRSD13cGKX5fMM9q8vmwFR0wLlmRlknKOsG7_0EJlawDWtBXf6E3cUllO78o6HvgjBXq4kiZFHNO6O7_TUAdElYlYXVIWEko9MuHo96zvyMtwJsjkIsUtpgePPoPv5-re7F5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430880533</pqid></control><display><type>article</type><title>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Y-Z ; Zeng, W-Z ; Xiao, X ; Huang, Y ; Song, X-L ; Yu, Z ; Tang, D ; Dong, X-P ; Zhu, M X ; Xu, T-L</creator><creatorcontrib>Wang, Y-Z ; Zeng, W-Z ; Xiao, X ; Huang, Y ; Song, X-L ; Yu, Z ; Tang, D ; Dong, X-P ; Zhu, M X ; Xu, T-L</creatorcontrib><description>Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from ASIC1a −/− mice exhibit significantly enhanced Ca 2+ retention capacity and accelerated Ca 2+ uptake rate. When challenged with hydrogen peroxide (H 2 O 2 ), ASIC1a −/− neurons are resistant to cytochrome c release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to ASIC1a deletion. Consistently, H 2 O 2 -induced neuronal death, which is MPT dependent, is reduced in ASIC1a −/− neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in ASIC1a −/− mouse brain, which also displays marked changes (&gt;2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2013.90</identifier><identifier>PMID: 23852371</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/82 ; 631/80/86 ; 692/699/375/1345 ; Acid Sensing Ion Channels - metabolism ; Acidosis ; Animals ; Apoptosis ; Biochemistry ; Biology ; Biomedical and Life Sciences ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell Death - physiology ; Cells, Cultured ; Cerebral Cortex - cytology ; Cytochrome ; Dehydrogenases ; Embryology ; Hydrogen peroxide ; Ischemia ; Kinases ; Life Sciences ; Medicine ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Neurological disorders ; Neurons - cytology ; Neurons - metabolism ; Neurosciences ; Original Paper ; Oxidative stress ; Oxidative Stress - physiology ; Permeability ; Proteins ; Reactive Oxygen Species - metabolism ; Stem Cells</subject><ispartof>Cell death and differentiation, 2013-10, Vol.20 (10), p.1359-1369</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>Copyright Nature Publishing Group Oct 2013</rights><rights>Copyright © 2013 Macmillan Publishers Limited 2013 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</citedby><cites>FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770907/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770907/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23852371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Y-Z</creatorcontrib><creatorcontrib>Zeng, W-Z</creatorcontrib><creatorcontrib>Xiao, X</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Song, X-L</creatorcontrib><creatorcontrib>Yu, Z</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><creatorcontrib>Dong, X-P</creatorcontrib><creatorcontrib>Zhu, M X</creatorcontrib><creatorcontrib>Xu, T-L</creatorcontrib><title>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from ASIC1a −/− mice exhibit significantly enhanced Ca 2+ retention capacity and accelerated Ca 2+ uptake rate. When challenged with hydrogen peroxide (H 2 O 2 ), ASIC1a −/− neurons are resistant to cytochrome c release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to ASIC1a deletion. Consistently, H 2 O 2 -induced neuronal death, which is MPT dependent, is reduced in ASIC1a −/− neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in ASIC1a −/− mouse brain, which also displays marked changes (&gt;2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.</description><subject>631/80/82</subject><subject>631/80/86</subject><subject>692/699/375/1345</subject><subject>Acid Sensing Ion Channels - metabolism</subject><subject>Acidosis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell Death - physiology</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cytochrome</subject><subject>Dehydrogenases</subject><subject>Embryology</subject><subject>Hydrogen peroxide</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Neurological disorders</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - physiology</subject><subject>Permeability</subject><subject>Proteins</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stem Cells</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2LFDEQxRtR3A89eZcGL8LaYyXpdDqXhWXwY2DBg3qUkE4qM1m6kzHpFva_N-OsyyoePFWK98tLql5VvSCwIsD6t8baFQXCVhIeVaekFV3DW2CPy5lxaCS04qQ6y_kGADohu6fVCWU9p0yQ0-rbJsxJGxzHZdSpvvq8WRNdJ9yWdsZcT36OZheDTV6P9R7ThHrwo59v63IvZD_7GBqLewwWw1wHXFIMBbWo592z6onTY8bnd_W8-vr-3Zf1x-b604fN-uq6Ma2Qc9NTAwNoTjsimODAgHHO0ZnW9IZrh4OlZGB0EEbw1oHTThJHLXBprKMdO68uj777ZZjQGjwMNap98pNOtypqr_5Ugt-pbfyhmBAgQRSD13cGKX5fMM9q8vmwFR0wLlmRlknKOsG7_0EJlawDWtBXf6E3cUllO78o6HvgjBXq4kiZFHNO6O7_TUAdElYlYXVIWEko9MuHo96zvyMtwJsjkIsUtpgePPoPv5-re7F5</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wang, Y-Z</creator><creator>Zeng, W-Z</creator><creator>Xiao, X</creator><creator>Huang, Y</creator><creator>Song, X-L</creator><creator>Yu, Z</creator><creator>Tang, D</creator><creator>Dong, X-P</creator><creator>Zhu, M X</creator><creator>Xu, T-L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</title><author>Wang, Y-Z ; Zeng, W-Z ; Xiao, X ; Huang, Y ; Song, X-L ; Yu, Z ; Tang, D ; Dong, X-P ; Zhu, M X ; Xu, T-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-82c0b0a526173750303555efc4c8c5afebd21b32b7c754f0faf91f2d059cdf263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/80/82</topic><topic>631/80/86</topic><topic>692/699/375/1345</topic><topic>Acid Sensing Ion Channels - metabolism</topic><topic>Acidosis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell Death - physiology</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cytochrome</topic><topic>Dehydrogenases</topic><topic>Embryology</topic><topic>Hydrogen peroxide</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Neurological disorders</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - physiology</topic><topic>Permeability</topic><topic>Proteins</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Y-Z</creatorcontrib><creatorcontrib>Zeng, W-Z</creatorcontrib><creatorcontrib>Xiao, X</creatorcontrib><creatorcontrib>Huang, Y</creatorcontrib><creatorcontrib>Song, X-L</creatorcontrib><creatorcontrib>Yu, Z</creatorcontrib><creatorcontrib>Tang, D</creatorcontrib><creatorcontrib>Dong, X-P</creatorcontrib><creatorcontrib>Zhu, M X</creatorcontrib><creatorcontrib>Xu, T-L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Y-Z</au><au>Zeng, W-Z</au><au>Xiao, X</au><au>Huang, Y</au><au>Song, X-L</au><au>Yu, Z</au><au>Tang, D</au><au>Dong, X-P</au><au>Zhu, M X</au><au>Xu, T-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>20</volume><issue>10</issue><spage>1359</spage><epage>1369</epage><pages>1359-1369</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from ASIC1a −/− mice exhibit significantly enhanced Ca 2+ retention capacity and accelerated Ca 2+ uptake rate. When challenged with hydrogen peroxide (H 2 O 2 ), ASIC1a −/− neurons are resistant to cytochrome c release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to ASIC1a deletion. Consistently, H 2 O 2 -induced neuronal death, which is MPT dependent, is reduced in ASIC1a −/− neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in ASIC1a −/− mouse brain, which also displays marked changes (&gt;2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23852371</pmid><doi>10.1038/cdd.2013.90</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2013-10, Vol.20 (10), p.1359-1369
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3770907
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects 631/80/82
631/80/86
692/699/375/1345
Acid Sensing Ion Channels - metabolism
Acidosis
Animals
Apoptosis
Biochemistry
Biology
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
Cell death
Cell Death - physiology
Cells, Cultured
Cerebral Cortex - cytology
Cytochrome
Dehydrogenases
Embryology
Hydrogen peroxide
Ischemia
Kinases
Life Sciences
Medicine
Mice
Mice, Knockout
Mitochondria
Mitochondria - metabolism
Neurological disorders
Neurons - cytology
Neurons - metabolism
Neurosciences
Original Paper
Oxidative stress
Oxidative Stress - physiology
Permeability
Proteins
Reactive Oxygen Species - metabolism
Stem Cells
title Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20ASIC1a%20regulates%20mitochondrial%20permeability%20transition-dependent%20neuronal%20death&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Wang,%20Y-Z&rft.date=2013-10-01&rft.volume=20&rft.issue=10&rft.spage=1359&rft.epage=1369&rft.pages=1359-1369&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2013.90&rft_dat=%3Cproquest_pubme%3E1439236756%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430880533&rft_id=info:pmid/23852371&rfr_iscdi=true