Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes

▶ 22q11DS genes are expressed embryonically at mesenychmal/epithelial induction sites. ▶ Embryonic neurogenesis and neuronal migration are altered in a model of 22q11DS. ▶ Altered expression of mitochondrial genes in the brain of a mouse model of 22q11DS. DiGeorge, or 22q11 deletion syndrome (22q11D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of developmental neuroscience 2011-05, Vol.29 (3), p.283-294
Hauptverfasser: Meechan, D.W., Maynard, T.M., Tucker, E.S., LaMantia, A.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 3
container_start_page 283
container_title International journal of developmental neuroscience
container_volume 29
creator Meechan, D.W.
Maynard, T.M.
Tucker, E.S.
LaMantia, A.-S.
description ▶ 22q11DS genes are expressed embryonically at mesenychmal/epithelial induction sites. ▶ Embryonic neurogenesis and neuronal migration are altered in a model of 22q11DS. ▶ Altered expression of mitochondrial genes in the brain of a mouse model of 22q11DS. DiGeorge, or 22q11 deletion syndrome (22q11DS), the most common survivable human genetic deletion disorder, is caused by deletion of a minimum of 32 contiguous genes on human chromosome 22, and presumably results from diminished dosage of one, some, or all of these genes—particularly during development. Nevertheless, the normal functions of 22q11 genes in the embryo or neonate, and their contribution to developmental pathogenesis that must underlie 22q11DS are not well understood. Our data suggests that a substantial number of 22q11 genes act specifically and in concert to mediate early morphogenetic interactions and subsequent cellular differentiation at phenotypically compromised sites—the limbs, heart, face and forebrain. When dosage of a broad set of these genes is diminished, early morphogenesis is altered, and initial 22q11DS phenotypes are established. Thereafter, functionally similar subsets of 22q11 genes—especially those that influence the cell cycle or mitochondrial function—remain expressed, particularly in the developing cerebral cortex, to regulate neurogenesis and synaptic development. When dosage of these genes is diminished, numbers, placement and connectivity of neurons and circuits essential for normal behavior may be disrupted. Such disruptions likely contribute to vulnerability for schizophrenia, autism, or attention deficit/hyperactivity disorder seen in most 22q11DS patients.
doi_str_mv 10.1016/j.ijdevneu.2010.08.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3770287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0736574810003783</els_id><sourcerecordid>954748220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6345-70f8cf79eb5ed18f88a6a75c09fa03cb483997c6ecf9d78133db05798b1e140d3</originalsourceid><addsrcrecordid>eNqNklFv0zAQxyMEYqXwFSa_8bJ2dpzEDg8ItJbRaho8bIg3y7EvravE7uykqB-G74qzbBM8jSdLd7_7353_lySnBM8JJsX5bm52Gg4W-nmKYxDzOcb5i2RCOKOzjGU_XyYTzGgxy1nGT5I3IexwJHKcvU5OUswpTbNskvy-2XoAtN_KAAG5Gi3MJTi_gfM0vSMEaWigM86icLTauzaistu6DVgIJiDde2M3qPLS2MgeoHH7Fmz3AX2XXQfexuwZ2nvXmBq8HJTOkLQataZzauuippENqnurhtz9BGPj-w5vk1e1bAK8e3inye2X5c3F19nVt8vVxeermSpols8YrrmqWQlVDprwmnNZSJYrXNYSU1VlnJYlUwWoutSME0p1hXNW8ooAybCm0-TjqLvvqxa0iht42Yi9N630R-GkEf9mrNmKjTsIyhhO449Pk_cPAt7d9RA60ZqgoGmkBdcHUebREp6m-FmSFyQvCcUDWYyk8i4ED_XTPASL4QjETjwegRiOQGAuosWx8PTvbZ7KHl2PwGoEfpkGjv8pK9aL6_VqvVj-uF7eDnHMx2afRi2I_hwMeBGUAatAGw-qE9qZ5-b9A6Og4R4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861591300</pqid></control><display><type>article</type><title>Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meechan, D.W. ; Maynard, T.M. ; Tucker, E.S. ; LaMantia, A.-S.</creator><creatorcontrib>Meechan, D.W. ; Maynard, T.M. ; Tucker, E.S. ; LaMantia, A.-S.</creatorcontrib><description>▶ 22q11DS genes are expressed embryonically at mesenychmal/epithelial induction sites. ▶ Embryonic neurogenesis and neuronal migration are altered in a model of 22q11DS. ▶ Altered expression of mitochondrial genes in the brain of a mouse model of 22q11DS. DiGeorge, or 22q11 deletion syndrome (22q11DS), the most common survivable human genetic deletion disorder, is caused by deletion of a minimum of 32 contiguous genes on human chromosome 22, and presumably results from diminished dosage of one, some, or all of these genes—particularly during development. Nevertheless, the normal functions of 22q11 genes in the embryo or neonate, and their contribution to developmental pathogenesis that must underlie 22q11DS are not well understood. Our data suggests that a substantial number of 22q11 genes act specifically and in concert to mediate early morphogenetic interactions and subsequent cellular differentiation at phenotypically compromised sites—the limbs, heart, face and forebrain. When dosage of a broad set of these genes is diminished, early morphogenesis is altered, and initial 22q11DS phenotypes are established. Thereafter, functionally similar subsets of 22q11 genes—especially those that influence the cell cycle or mitochondrial function—remain expressed, particularly in the developing cerebral cortex, to regulate neurogenesis and synaptic development. When dosage of these genes is diminished, numbers, placement and connectivity of neurons and circuits essential for normal behavior may be disrupted. Such disruptions likely contribute to vulnerability for schizophrenia, autism, or attention deficit/hyperactivity disorder seen in most 22q11DS patients.</description><identifier>ISSN: 0736-5748</identifier><identifier>EISSN: 1873-474X</identifier><identifier>DOI: 10.1016/j.ijdevneu.2010.08.005</identifier><identifier>PMID: 20833244</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>22q11 Deletion Syndrome - genetics ; 22q11 Deletion Syndrome - pathology ; 22q11 Deletion Syndrome - physiopathology ; ADHD ; Animals ; Attention deficit hyperactivity disorder ; Autism ; Brain ; Brain - abnormalities ; Brain - embryology ; Brain - physiology ; Cell cycle ; Cell Movement ; Cell Proliferation ; chromosome 22 ; Chromosome deletion ; Chromosomes, Human, Pair 22 - genetics ; Circuits ; Cortex ; Data processing ; Development ; Differentiation ; DiGeorge Syndrome - genetics ; DiGeorge Syndrome - pathology ; DiGeorge Syndrome - physiopathology ; Embryos ; Forebrain ; Gene Dosage ; Heart ; Humans ; Limbs ; Mental disorders ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Morphogenesis ; Neonates ; Nervous system ; Neural networks ; Neurogenesis ; Pattern formation ; Phenotype ; Schizophrenia ; Synaptogenesis</subject><ispartof>International journal of developmental neuroscience, 2011-05, Vol.29 (3), p.283-294</ispartof><rights>2010 ISDN</rights><rights>2011 ISDN</rights><rights>Copyright © 2010 ISDN. Published by Elsevier Ltd. All rights reserved.</rights><rights>2010 ISDN. Published by Elsevier Ltd. All rights reserved. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6345-70f8cf79eb5ed18f88a6a75c09fa03cb483997c6ecf9d78133db05798b1e140d3</citedby><cites>FETCH-LOGICAL-c6345-70f8cf79eb5ed18f88a6a75c09fa03cb483997c6ecf9d78133db05798b1e140d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2Fj.ijdevneu.2010.08.005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1016%2Fj.ijdevneu.2010.08.005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20833244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meechan, D.W.</creatorcontrib><creatorcontrib>Maynard, T.M.</creatorcontrib><creatorcontrib>Tucker, E.S.</creatorcontrib><creatorcontrib>LaMantia, A.-S.</creatorcontrib><title>Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes</title><title>International journal of developmental neuroscience</title><addtitle>Int J Dev Neurosci</addtitle><description>▶ 22q11DS genes are expressed embryonically at mesenychmal/epithelial induction sites. ▶ Embryonic neurogenesis and neuronal migration are altered in a model of 22q11DS. ▶ Altered expression of mitochondrial genes in the brain of a mouse model of 22q11DS. DiGeorge, or 22q11 deletion syndrome (22q11DS), the most common survivable human genetic deletion disorder, is caused by deletion of a minimum of 32 contiguous genes on human chromosome 22, and presumably results from diminished dosage of one, some, or all of these genes—particularly during development. Nevertheless, the normal functions of 22q11 genes in the embryo or neonate, and their contribution to developmental pathogenesis that must underlie 22q11DS are not well understood. Our data suggests that a substantial number of 22q11 genes act specifically and in concert to mediate early morphogenetic interactions and subsequent cellular differentiation at phenotypically compromised sites—the limbs, heart, face and forebrain. When dosage of a broad set of these genes is diminished, early morphogenesis is altered, and initial 22q11DS phenotypes are established. Thereafter, functionally similar subsets of 22q11 genes—especially those that influence the cell cycle or mitochondrial function—remain expressed, particularly in the developing cerebral cortex, to regulate neurogenesis and synaptic development. When dosage of these genes is diminished, numbers, placement and connectivity of neurons and circuits essential for normal behavior may be disrupted. Such disruptions likely contribute to vulnerability for schizophrenia, autism, or attention deficit/hyperactivity disorder seen in most 22q11DS patients.</description><subject>22q11 Deletion Syndrome - genetics</subject><subject>22q11 Deletion Syndrome - pathology</subject><subject>22q11 Deletion Syndrome - physiopathology</subject><subject>ADHD</subject><subject>Animals</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Autism</subject><subject>Brain</subject><subject>Brain - abnormalities</subject><subject>Brain - embryology</subject><subject>Brain - physiology</subject><subject>Cell cycle</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>chromosome 22</subject><subject>Chromosome deletion</subject><subject>Chromosomes, Human, Pair 22 - genetics</subject><subject>Circuits</subject><subject>Cortex</subject><subject>Data processing</subject><subject>Development</subject><subject>Differentiation</subject><subject>DiGeorge Syndrome - genetics</subject><subject>DiGeorge Syndrome - pathology</subject><subject>DiGeorge Syndrome - physiopathology</subject><subject>Embryos</subject><subject>Forebrain</subject><subject>Gene Dosage</subject><subject>Heart</subject><subject>Humans</subject><subject>Limbs</subject><subject>Mental disorders</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Morphogenesis</subject><subject>Neonates</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurogenesis</subject><subject>Pattern formation</subject><subject>Phenotype</subject><subject>Schizophrenia</subject><subject>Synaptogenesis</subject><issn>0736-5748</issn><issn>1873-474X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNklFv0zAQxyMEYqXwFSa_8bJ2dpzEDg8ItJbRaho8bIg3y7EvravE7uykqB-G74qzbBM8jSdLd7_7353_lySnBM8JJsX5bm52Gg4W-nmKYxDzOcb5i2RCOKOzjGU_XyYTzGgxy1nGT5I3IexwJHKcvU5OUswpTbNskvy-2XoAtN_KAAG5Gi3MJTi_gfM0vSMEaWigM86icLTauzaistu6DVgIJiDde2M3qPLS2MgeoHH7Fmz3AX2XXQfexuwZ2nvXmBq8HJTOkLQataZzauuippENqnurhtz9BGPj-w5vk1e1bAK8e3inye2X5c3F19nVt8vVxeermSpols8YrrmqWQlVDprwmnNZSJYrXNYSU1VlnJYlUwWoutSME0p1hXNW8ooAybCm0-TjqLvvqxa0iht42Yi9N630R-GkEf9mrNmKjTsIyhhO449Pk_cPAt7d9RA60ZqgoGmkBdcHUebREp6m-FmSFyQvCcUDWYyk8i4ED_XTPASL4QjETjwegRiOQGAuosWx8PTvbZ7KHl2PwGoEfpkGjv8pK9aL6_VqvVj-uF7eDnHMx2afRi2I_hwMeBGUAatAGw-qE9qZ5-b9A6Og4R4</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Meechan, D.W.</creator><creator>Maynard, T.M.</creator><creator>Tucker, E.S.</creator><creator>LaMantia, A.-S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201105</creationdate><title>Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes</title><author>Meechan, D.W. ; Maynard, T.M. ; Tucker, E.S. ; LaMantia, A.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6345-70f8cf79eb5ed18f88a6a75c09fa03cb483997c6ecf9d78133db05798b1e140d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>22q11 Deletion Syndrome - genetics</topic><topic>22q11 Deletion Syndrome - pathology</topic><topic>22q11 Deletion Syndrome - physiopathology</topic><topic>ADHD</topic><topic>Animals</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Autism</topic><topic>Brain</topic><topic>Brain - abnormalities</topic><topic>Brain - embryology</topic><topic>Brain - physiology</topic><topic>Cell cycle</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>chromosome 22</topic><topic>Chromosome deletion</topic><topic>Chromosomes, Human, Pair 22 - genetics</topic><topic>Circuits</topic><topic>Cortex</topic><topic>Data processing</topic><topic>Development</topic><topic>Differentiation</topic><topic>DiGeorge Syndrome - genetics</topic><topic>DiGeorge Syndrome - pathology</topic><topic>DiGeorge Syndrome - physiopathology</topic><topic>Embryos</topic><topic>Forebrain</topic><topic>Gene Dosage</topic><topic>Heart</topic><topic>Humans</topic><topic>Limbs</topic><topic>Mental disorders</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Morphogenesis</topic><topic>Neonates</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurogenesis</topic><topic>Pattern formation</topic><topic>Phenotype</topic><topic>Schizophrenia</topic><topic>Synaptogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meechan, D.W.</creatorcontrib><creatorcontrib>Maynard, T.M.</creatorcontrib><creatorcontrib>Tucker, E.S.</creatorcontrib><creatorcontrib>LaMantia, A.-S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of developmental neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meechan, D.W.</au><au>Maynard, T.M.</au><au>Tucker, E.S.</au><au>LaMantia, A.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes</atitle><jtitle>International journal of developmental neuroscience</jtitle><addtitle>Int J Dev Neurosci</addtitle><date>2011-05</date><risdate>2011</risdate><volume>29</volume><issue>3</issue><spage>283</spage><epage>294</epage><pages>283-294</pages><issn>0736-5748</issn><eissn>1873-474X</eissn><abstract>▶ 22q11DS genes are expressed embryonically at mesenychmal/epithelial induction sites. ▶ Embryonic neurogenesis and neuronal migration are altered in a model of 22q11DS. ▶ Altered expression of mitochondrial genes in the brain of a mouse model of 22q11DS. DiGeorge, or 22q11 deletion syndrome (22q11DS), the most common survivable human genetic deletion disorder, is caused by deletion of a minimum of 32 contiguous genes on human chromosome 22, and presumably results from diminished dosage of one, some, or all of these genes—particularly during development. Nevertheless, the normal functions of 22q11 genes in the embryo or neonate, and their contribution to developmental pathogenesis that must underlie 22q11DS are not well understood. Our data suggests that a substantial number of 22q11 genes act specifically and in concert to mediate early morphogenetic interactions and subsequent cellular differentiation at phenotypically compromised sites—the limbs, heart, face and forebrain. When dosage of a broad set of these genes is diminished, early morphogenesis is altered, and initial 22q11DS phenotypes are established. Thereafter, functionally similar subsets of 22q11 genes—especially those that influence the cell cycle or mitochondrial function—remain expressed, particularly in the developing cerebral cortex, to regulate neurogenesis and synaptic development. When dosage of these genes is diminished, numbers, placement and connectivity of neurons and circuits essential for normal behavior may be disrupted. Such disruptions likely contribute to vulnerability for schizophrenia, autism, or attention deficit/hyperactivity disorder seen in most 22q11DS patients.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>20833244</pmid><doi>10.1016/j.ijdevneu.2010.08.005</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0736-5748
ispartof International journal of developmental neuroscience, 2011-05, Vol.29 (3), p.283-294
issn 0736-5748
1873-474X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3770287
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 22q11 Deletion Syndrome - genetics
22q11 Deletion Syndrome - pathology
22q11 Deletion Syndrome - physiopathology
ADHD
Animals
Attention deficit hyperactivity disorder
Autism
Brain
Brain - abnormalities
Brain - embryology
Brain - physiology
Cell cycle
Cell Movement
Cell Proliferation
chromosome 22
Chromosome deletion
Chromosomes, Human, Pair 22 - genetics
Circuits
Cortex
Data processing
Development
Differentiation
DiGeorge Syndrome - genetics
DiGeorge Syndrome - pathology
DiGeorge Syndrome - physiopathology
Embryos
Forebrain
Gene Dosage
Heart
Humans
Limbs
Mental disorders
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Morphogenesis
Neonates
Nervous system
Neural networks
Neurogenesis
Pattern formation
Phenotype
Schizophrenia
Synaptogenesis
title Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20phases%20of%20DiGeorge/22q11%20deletion%20syndrome%20pathogenesis%20during%20brain%20development:%20Patterning,%20proliferation,%20and%20mitochondrial%20functions%20of%2022q11%20genes&rft.jtitle=International%20journal%20of%20developmental%20neuroscience&rft.au=Meechan,%20D.W.&rft.date=2011-05&rft.volume=29&rft.issue=3&rft.spage=283&rft.epage=294&rft.pages=283-294&rft.issn=0736-5748&rft.eissn=1873-474X&rft_id=info:doi/10.1016/j.ijdevneu.2010.08.005&rft_dat=%3Cproquest_pubme%3E954748220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861591300&rft_id=info:pmid/20833244&rft_els_id=S0736574810003783&rfr_iscdi=true