Computational modeling of epilepsy for an experimental neurologist

Computational modeling can be a powerful tool for an experimentalist, providing a rigorous mathematical model of the system you are studying. This can be valuable in testing your hypotheses and developing experimental protocols prior to experimenting. This paper reviews models of seizures and epilep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental neurology 2013-06, Vol.244, p.75-86
Hauptverfasser: Holt, Abbey B., Netoff, Theoden I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 75
container_title Experimental neurology
container_volume 244
creator Holt, Abbey B.
Netoff, Theoden I.
description Computational modeling can be a powerful tool for an experimentalist, providing a rigorous mathematical model of the system you are studying. This can be valuable in testing your hypotheses and developing experimental protocols prior to experimenting. This paper reviews models of seizures and epilepsy at different scales, including cellular, network, cortical region, and brain scales by looking at how they have been used in conjunction with experimental data. At each scale, models with different levels of abstraction, the extraction of physiological detail, are presented. Varying levels of detail are necessary in different situations. Physiologically realistic models are valuable surrogates for experimental systems because, unlike in an experiment, every parameter can be changed and every variable can be observed. Abstract models are useful in determining essential parameters of a system, allowing the experimentalist to extract principles that explain the relationship between mechanisms and the behavior of the system. Modeling is becoming easier with the emergence of platforms dedicated to neuronal modeling and databases of models that can be downloaded. Modeling will never be a replacement for animal and clinical experiments, but it should be a starting point in designing experiments and understanding their results.
doi_str_mv 10.1016/j.expneurol.2012.05.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3769176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488612002014</els_id><sourcerecordid>1349702419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-537e890270f0dcb20d38b8c7a9f2c91b4058d51c9be16f6c36ebea657f36b2663</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS0EYrfAXyg5ckk6thM7vlSiK2grIXFpz5bjTLZeJXGwE1T-fb1aumpPe5rDfPPesx8htxQKClR82hX4expxCb4vGFBWQFUA8DOypqAgZyWHc7IGoGVe1rVYkQ8x7gBAlUxekhVjgsqyVmvyZeOHaZnN7Pxo-mzwLfZu3Ga-y3ByPU7xLet8yMyYJUcMbsBxTuDB229dnK_JRWf6iDfv84r8fHz4sfmWPz1__b65f8ptBfWcV1xirYBJ6KC1DYOW101tpVEds4o2JVR1W1GrGqSiE5YLbNCISnZcNEwIfkU-H3SnpRmwtSlIML2eUiYT3rQ3Tv-_Gd0vvfWvmkuhqNwL3L0LBP-yYJz14KLFvjcj-iVqWgFIAULQ0ygvlQRWUpVQeUBt8DEG7I6JKOh9WXqnj2XpfVkaKp3KSpcf_33Q8e5vOwm4PwCYvvXVYdDROhwtti6gnXXr3UmTP41ArAk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349702419</pqid></control><display><type>article</type><title>Computational modeling of epilepsy for an experimental neurologist</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Holt, Abbey B. ; Netoff, Theoden I.</creator><creatorcontrib>Holt, Abbey B. ; Netoff, Theoden I.</creatorcontrib><description>Computational modeling can be a powerful tool for an experimentalist, providing a rigorous mathematical model of the system you are studying. This can be valuable in testing your hypotheses and developing experimental protocols prior to experimenting. This paper reviews models of seizures and epilepsy at different scales, including cellular, network, cortical region, and brain scales by looking at how they have been used in conjunction with experimental data. At each scale, models with different levels of abstraction, the extraction of physiological detail, are presented. Varying levels of detail are necessary in different situations. Physiologically realistic models are valuable surrogates for experimental systems because, unlike in an experiment, every parameter can be changed and every variable can be observed. Abstract models are useful in determining essential parameters of a system, allowing the experimentalist to extract principles that explain the relationship between mechanisms and the behavior of the system. Modeling is becoming easier with the emergence of platforms dedicated to neuronal modeling and databases of models that can be downloaded. Modeling will never be a replacement for animal and clinical experiments, but it should be a starting point in designing experiments and understanding their results.</description><identifier>ISSN: 0014-4886</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2012.05.003</identifier><identifier>PMID: 22617489</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Brain - pathology ; Computation ; Computer Simulation ; Epilepsy ; Epilepsy - diagnosis ; Epilepsy - therapy ; Humans ; Models, Biological ; Networks</subject><ispartof>Experimental neurology, 2013-06, Vol.244, p.75-86</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-537e890270f0dcb20d38b8c7a9f2c91b4058d51c9be16f6c36ebea657f36b2663</citedby><cites>FETCH-LOGICAL-c508t-537e890270f0dcb20d38b8c7a9f2c91b4058d51c9be16f6c36ebea657f36b2663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014488612002014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22617489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holt, Abbey B.</creatorcontrib><creatorcontrib>Netoff, Theoden I.</creatorcontrib><title>Computational modeling of epilepsy for an experimental neurologist</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Computational modeling can be a powerful tool for an experimentalist, providing a rigorous mathematical model of the system you are studying. This can be valuable in testing your hypotheses and developing experimental protocols prior to experimenting. This paper reviews models of seizures and epilepsy at different scales, including cellular, network, cortical region, and brain scales by looking at how they have been used in conjunction with experimental data. At each scale, models with different levels of abstraction, the extraction of physiological detail, are presented. Varying levels of detail are necessary in different situations. Physiologically realistic models are valuable surrogates for experimental systems because, unlike in an experiment, every parameter can be changed and every variable can be observed. Abstract models are useful in determining essential parameters of a system, allowing the experimentalist to extract principles that explain the relationship between mechanisms and the behavior of the system. Modeling is becoming easier with the emergence of platforms dedicated to neuronal modeling and databases of models that can be downloaded. Modeling will never be a replacement for animal and clinical experiments, but it should be a starting point in designing experiments and understanding their results.</description><subject>Animals</subject><subject>Brain - pathology</subject><subject>Computation</subject><subject>Computer Simulation</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Epilepsy - therapy</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Networks</subject><issn>0014-4886</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQhS0EYrfAXyg5ckk6thM7vlSiK2grIXFpz5bjTLZeJXGwE1T-fb1aumpPe5rDfPPesx8htxQKClR82hX4expxCb4vGFBWQFUA8DOypqAgZyWHc7IGoGVe1rVYkQ8x7gBAlUxekhVjgsqyVmvyZeOHaZnN7Pxo-mzwLfZu3Ga-y3ByPU7xLet8yMyYJUcMbsBxTuDB229dnK_JRWf6iDfv84r8fHz4sfmWPz1__b65f8ptBfWcV1xirYBJ6KC1DYOW101tpVEds4o2JVR1W1GrGqSiE5YLbNCISnZcNEwIfkU-H3SnpRmwtSlIML2eUiYT3rQ3Tv-_Gd0vvfWvmkuhqNwL3L0LBP-yYJz14KLFvjcj-iVqWgFIAULQ0ygvlQRWUpVQeUBt8DEG7I6JKOh9WXqnj2XpfVkaKp3KSpcf_33Q8e5vOwm4PwCYvvXVYdDROhwtti6gnXXr3UmTP41ArAk</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Holt, Abbey B.</creator><creator>Netoff, Theoden I.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130601</creationdate><title>Computational modeling of epilepsy for an experimental neurologist</title><author>Holt, Abbey B. ; Netoff, Theoden I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-537e890270f0dcb20d38b8c7a9f2c91b4058d51c9be16f6c36ebea657f36b2663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Brain - pathology</topic><topic>Computation</topic><topic>Computer Simulation</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Epilepsy - therapy</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holt, Abbey B.</creatorcontrib><creatorcontrib>Netoff, Theoden I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holt, Abbey B.</au><au>Netoff, Theoden I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling of epilepsy for an experimental neurologist</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>244</volume><spage>75</spage><epage>86</epage><pages>75-86</pages><issn>0014-4886</issn><eissn>1090-2430</eissn><abstract>Computational modeling can be a powerful tool for an experimentalist, providing a rigorous mathematical model of the system you are studying. This can be valuable in testing your hypotheses and developing experimental protocols prior to experimenting. This paper reviews models of seizures and epilepsy at different scales, including cellular, network, cortical region, and brain scales by looking at how they have been used in conjunction with experimental data. At each scale, models with different levels of abstraction, the extraction of physiological detail, are presented. Varying levels of detail are necessary in different situations. Physiologically realistic models are valuable surrogates for experimental systems because, unlike in an experiment, every parameter can be changed and every variable can be observed. Abstract models are useful in determining essential parameters of a system, allowing the experimentalist to extract principles that explain the relationship between mechanisms and the behavior of the system. Modeling is becoming easier with the emergence of platforms dedicated to neuronal modeling and databases of models that can be downloaded. Modeling will never be a replacement for animal and clinical experiments, but it should be a starting point in designing experiments and understanding their results.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22617489</pmid><doi>10.1016/j.expneurol.2012.05.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4886
ispartof Experimental neurology, 2013-06, Vol.244, p.75-86
issn 0014-4886
1090-2430
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3769176
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Brain - pathology
Computation
Computer Simulation
Epilepsy
Epilepsy - diagnosis
Epilepsy - therapy
Humans
Models, Biological
Networks
title Computational modeling of epilepsy for an experimental neurologist
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20of%20epilepsy%20for%20an%20experimental%20neurologist&rft.jtitle=Experimental%20neurology&rft.au=Holt,%20Abbey%20B.&rft.date=2013-06-01&rft.volume=244&rft.spage=75&rft.epage=86&rft.pages=75-86&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2012.05.003&rft_dat=%3Cproquest_pubme%3E1349702419%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349702419&rft_id=info:pmid/22617489&rft_els_id=S0014488612002014&rfr_iscdi=true