NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth
Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitoc...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-09, Vol.110 (36), p.14676-14681 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14681 |
---|---|
container_issue | 36 |
container_start_page | 14676 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Sohn, Yang-Sung Tamir, Sagi Song, Luhua Michaeli, Dorit Matouk, Imad Conlan, Andrea R. Harir, Yael Holt, Sarah H. Shulaev, Vladimir Paddock, Mark L. Hochberg, Abraham Cabanchick, Ioav Z. Onuchic, José N. Jennings, Patricia A. Nechushtai, Rachel Mittler, Ron |
description | Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy. |
doi_str_mv | 10.1073/pnas.1313198110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42713173</jstor_id><sourcerecordid>42713173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEotvCmRNgqRcuaT22EzuXSlW1BaSqHGjPltdxNl4l9mI7oH4CvjbO7rL8kWX5ML95b8avKN4AvgDM6eXWqXgBNJ9GAOBnxQJwA2XNGvy8WGBMeCkYYSfFaYwbjHFTCfyyOCG0qRohYFH8vL--LQEp16LRJn-_XD4gFQzSxqWgBpQ86qdRObQKRsWEtHLaBLQNfrCdCSpZn2tPaFTWpXytW--EdO9dG2xW6P1ofEwq2rizya2jTzOXptEHtA7-R-pfFS86NUTz-vCeFY-3y4ebT-Xdl4-fb67vSl01kEpagWCKYWIEE11NodJYdStDNFGdbgklNdW80p2oKTcdr2peG9G1rVm1vK0UPSuu9rrbaTWa9rCm3AY7qvAkvbLy34qzvVz775LymleUZ4EPB4Hgv00mJjnaqM0wKGf8FCUITAEI4zSj5_-hGz8Fl9eTwCgwxjGITF3uKR18jMF0x2EAyzlkOYcs_4ScO979vcOR_51qBtABmDuPclmP1tk6_0lG3u6RTUw-HBlGeLbZzf5-X--Ul2odbJSPXwmGGmNgMBO_AH7ww0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431447018</pqid></control><display><type>article</type><title>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sohn, Yang-Sung ; Tamir, Sagi ; Song, Luhua ; Michaeli, Dorit ; Matouk, Imad ; Conlan, Andrea R. ; Harir, Yael ; Holt, Sarah H. ; Shulaev, Vladimir ; Paddock, Mark L. ; Hochberg, Abraham ; Cabanchick, Ioav Z. ; Onuchic, José N. ; Jennings, Patricia A. ; Nechushtai, Rachel ; Mittler, Ron</creator><creatorcontrib>Sohn, Yang-Sung ; Tamir, Sagi ; Song, Luhua ; Michaeli, Dorit ; Matouk, Imad ; Conlan, Andrea R. ; Harir, Yael ; Holt, Sarah H. ; Shulaev, Vladimir ; Paddock, Mark L. ; Hochberg, Abraham ; Cabanchick, Ioav Z. ; Onuchic, José N. ; Jennings, Patricia A. ; Nechushtai, Rachel ; Mittler, Ron</creatorcontrib><description>Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1313198110</identifier><identifier>PMID: 23959881</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; antineoplastic agents ; apoptosis ; autophagy ; Biological Sciences ; Breast cancer ; breast neoplasms ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cancer ; Cancer therapies ; Carcinogenesis - genetics ; Carcinogenesis - metabolism ; Cell culture techniques ; Cell growth ; Cell Line, Tumor ; Cell lines ; Cell Proliferation ; Cell Survival - drug effects ; Female ; Glycolysis - drug effects ; Homeostasis ; Humans ; Immunoblotting ; iron ; MCF-7 Cells ; Membrane Potential, Mitochondrial - drug effects ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; metabolism ; Mice ; Mice, Nude ; Microscopy, Electron, Transmission ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Mitochondrial membranes ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; neoplasm cells ; Oligomycins - pharmacology ; oxygen ; Pioglitazone ; proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA Interference ; RNA-protein interactions ; therapeutics ; Thiazolidinediones - pharmacology ; Transplantation, Heterologous ; Tumor Burden - genetics ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-09, Vol.110 (36), p.14676-14681</ispartof><rights>Copyright National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 3, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</citedby><cites>FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42713173$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42713173$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23959881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sohn, Yang-Sung</creatorcontrib><creatorcontrib>Tamir, Sagi</creatorcontrib><creatorcontrib>Song, Luhua</creatorcontrib><creatorcontrib>Michaeli, Dorit</creatorcontrib><creatorcontrib>Matouk, Imad</creatorcontrib><creatorcontrib>Conlan, Andrea R.</creatorcontrib><creatorcontrib>Harir, Yael</creatorcontrib><creatorcontrib>Holt, Sarah H.</creatorcontrib><creatorcontrib>Shulaev, Vladimir</creatorcontrib><creatorcontrib>Paddock, Mark L.</creatorcontrib><creatorcontrib>Hochberg, Abraham</creatorcontrib><creatorcontrib>Cabanchick, Ioav Z.</creatorcontrib><creatorcontrib>Onuchic, José N.</creatorcontrib><creatorcontrib>Jennings, Patricia A.</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><title>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.</description><subject>Animals</subject><subject>antineoplastic agents</subject><subject>apoptosis</subject><subject>autophagy</subject><subject>Biological Sciences</subject><subject>Breast cancer</subject><subject>breast neoplasms</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carcinogenesis - genetics</subject><subject>Carcinogenesis - metabolism</subject><subject>Cell culture techniques</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cell Proliferation</subject><subject>Cell Survival - drug effects</subject><subject>Female</subject><subject>Glycolysis - drug effects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>iron</subject><subject>MCF-7 Cells</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial membranes</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>neoplasm cells</subject><subject>Oligomycins - pharmacology</subject><subject>oxygen</subject><subject>Pioglitazone</subject><subject>proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA Interference</subject><subject>RNA-protein interactions</subject><subject>therapeutics</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Burden - genetics</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxSMEotvCmRNgqRcuaT22EzuXSlW1BaSqHGjPltdxNl4l9mI7oH4CvjbO7rL8kWX5ML95b8avKN4AvgDM6eXWqXgBNJ9GAOBnxQJwA2XNGvy8WGBMeCkYYSfFaYwbjHFTCfyyOCG0qRohYFH8vL--LQEp16LRJn-_XD4gFQzSxqWgBpQ86qdRObQKRsWEtHLaBLQNfrCdCSpZn2tPaFTWpXytW--EdO9dG2xW6P1ofEwq2rizya2jTzOXptEHtA7-R-pfFS86NUTz-vCeFY-3y4ebT-Xdl4-fb67vSl01kEpagWCKYWIEE11NodJYdStDNFGdbgklNdW80p2oKTcdr2peG9G1rVm1vK0UPSuu9rrbaTWa9rCm3AY7qvAkvbLy34qzvVz775LymleUZ4EPB4Hgv00mJjnaqM0wKGf8FCUITAEI4zSj5_-hGz8Fl9eTwCgwxjGITF3uKR18jMF0x2EAyzlkOYcs_4ScO979vcOR_51qBtABmDuPclmP1tk6_0lG3u6RTUw-HBlGeLbZzf5-X--Ul2odbJSPXwmGGmNgMBO_AH7ww0Y</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Sohn, Yang-Sung</creator><creator>Tamir, Sagi</creator><creator>Song, Luhua</creator><creator>Michaeli, Dorit</creator><creator>Matouk, Imad</creator><creator>Conlan, Andrea R.</creator><creator>Harir, Yael</creator><creator>Holt, Sarah H.</creator><creator>Shulaev, Vladimir</creator><creator>Paddock, Mark L.</creator><creator>Hochberg, Abraham</creator><creator>Cabanchick, Ioav Z.</creator><creator>Onuchic, José N.</creator><creator>Jennings, Patricia A.</creator><creator>Nechushtai, Rachel</creator><creator>Mittler, Ron</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130903</creationdate><title>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</title><author>Sohn, Yang-Sung ; Tamir, Sagi ; Song, Luhua ; Michaeli, Dorit ; Matouk, Imad ; Conlan, Andrea R. ; Harir, Yael ; Holt, Sarah H. ; Shulaev, Vladimir ; Paddock, Mark L. ; Hochberg, Abraham ; Cabanchick, Ioav Z. ; Onuchic, José N. ; Jennings, Patricia A. ; Nechushtai, Rachel ; Mittler, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>antineoplastic agents</topic><topic>apoptosis</topic><topic>autophagy</topic><topic>Biological Sciences</topic><topic>Breast cancer</topic><topic>breast neoplasms</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carcinogenesis - genetics</topic><topic>Carcinogenesis - metabolism</topic><topic>Cell culture techniques</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cell Proliferation</topic><topic>Cell Survival - drug effects</topic><topic>Female</topic><topic>Glycolysis - drug effects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>iron</topic><topic>MCF-7 Cells</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial membranes</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>neoplasm cells</topic><topic>Oligomycins - pharmacology</topic><topic>oxygen</topic><topic>Pioglitazone</topic><topic>proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA Interference</topic><topic>RNA-protein interactions</topic><topic>therapeutics</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Burden - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Yang-Sung</creatorcontrib><creatorcontrib>Tamir, Sagi</creatorcontrib><creatorcontrib>Song, Luhua</creatorcontrib><creatorcontrib>Michaeli, Dorit</creatorcontrib><creatorcontrib>Matouk, Imad</creatorcontrib><creatorcontrib>Conlan, Andrea R.</creatorcontrib><creatorcontrib>Harir, Yael</creatorcontrib><creatorcontrib>Holt, Sarah H.</creatorcontrib><creatorcontrib>Shulaev, Vladimir</creatorcontrib><creatorcontrib>Paddock, Mark L.</creatorcontrib><creatorcontrib>Hochberg, Abraham</creatorcontrib><creatorcontrib>Cabanchick, Ioav Z.</creatorcontrib><creatorcontrib>Onuchic, José N.</creatorcontrib><creatorcontrib>Jennings, Patricia A.</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Yang-Sung</au><au>Tamir, Sagi</au><au>Song, Luhua</au><au>Michaeli, Dorit</au><au>Matouk, Imad</au><au>Conlan, Andrea R.</au><au>Harir, Yael</au><au>Holt, Sarah H.</au><au>Shulaev, Vladimir</au><au>Paddock, Mark L.</au><au>Hochberg, Abraham</au><au>Cabanchick, Ioav Z.</au><au>Onuchic, José N.</au><au>Jennings, Patricia A.</au><au>Nechushtai, Rachel</au><au>Mittler, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-09-03</date><risdate>2013</risdate><volume>110</volume><issue>36</issue><spage>14676</spage><epage>14681</epage><pages>14676-14681</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23959881</pmid><doi>10.1073/pnas.1313198110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-09, Vol.110 (36), p.14676-14681 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767537 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals antineoplastic agents apoptosis autophagy Biological Sciences Breast cancer breast neoplasms Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Cancer Cancer therapies Carcinogenesis - genetics Carcinogenesis - metabolism Cell culture techniques Cell growth Cell Line, Tumor Cell lines Cell Proliferation Cell Survival - drug effects Female Glycolysis - drug effects Homeostasis Humans Immunoblotting iron MCF-7 Cells Membrane Potential, Mitochondrial - drug effects Membrane Proteins - genetics Membrane Proteins - metabolism metabolism Mice Mice, Nude Microscopy, Electron, Transmission Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondria - ultrastructure Mitochondrial membranes Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism neoplasm cells Oligomycins - pharmacology oxygen Pioglitazone proteins Reactive oxygen species Reactive Oxygen Species - metabolism RNA Interference RNA-protein interactions therapeutics Thiazolidinediones - pharmacology Transplantation, Heterologous Tumor Burden - genetics Tumors |
title | NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NAF-1%20and%20mitoNEET%20are%20central%20to%20human%20breast%20cancer%20proliferation%20by%20maintaining%20mitochondrial%20homeostasis%20and%20promoting%20tumor%20growth&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sohn,%20Yang-Sung&rft.date=2013-09-03&rft.volume=110&rft.issue=36&rft.spage=14676&rft.epage=14681&rft.pages=14676-14681&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1313198110&rft_dat=%3Cjstor_pubme%3E42713173%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431447018&rft_id=info:pmid/23959881&rft_jstor_id=42713173&rfr_iscdi=true |