NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth

Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-09, Vol.110 (36), p.14676-14681
Hauptverfasser: Sohn, Yang-Sung, Tamir, Sagi, Song, Luhua, Michaeli, Dorit, Matouk, Imad, Conlan, Andrea R., Harir, Yael, Holt, Sarah H., Shulaev, Vladimir, Paddock, Mark L., Hochberg, Abraham, Cabanchick, Ioav Z., Onuchic, José N., Jennings, Patricia A., Nechushtai, Rachel, Mittler, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14681
container_issue 36
container_start_page 14676
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Sohn, Yang-Sung
Tamir, Sagi
Song, Luhua
Michaeli, Dorit
Matouk, Imad
Conlan, Andrea R.
Harir, Yael
Holt, Sarah H.
Shulaev, Vladimir
Paddock, Mark L.
Hochberg, Abraham
Cabanchick, Ioav Z.
Onuchic, José N.
Jennings, Patricia A.
Nechushtai, Rachel
Mittler, Ron
description Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.
doi_str_mv 10.1073/pnas.1313198110
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42713173</jstor_id><sourcerecordid>42713173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEotvCmRNgqRcuaT22EzuXSlW1BaSqHGjPltdxNl4l9mI7oH4CvjbO7rL8kWX5ML95b8avKN4AvgDM6eXWqXgBNJ9GAOBnxQJwA2XNGvy8WGBMeCkYYSfFaYwbjHFTCfyyOCG0qRohYFH8vL--LQEp16LRJn-_XD4gFQzSxqWgBpQ86qdRObQKRsWEtHLaBLQNfrCdCSpZn2tPaFTWpXytW--EdO9dG2xW6P1ofEwq2rizya2jTzOXptEHtA7-R-pfFS86NUTz-vCeFY-3y4ebT-Xdl4-fb67vSl01kEpagWCKYWIEE11NodJYdStDNFGdbgklNdW80p2oKTcdr2peG9G1rVm1vK0UPSuu9rrbaTWa9rCm3AY7qvAkvbLy34qzvVz775LymleUZ4EPB4Hgv00mJjnaqM0wKGf8FCUITAEI4zSj5_-hGz8Fl9eTwCgwxjGITF3uKR18jMF0x2EAyzlkOYcs_4ScO979vcOR_51qBtABmDuPclmP1tk6_0lG3u6RTUw-HBlGeLbZzf5-X--Ul2odbJSPXwmGGmNgMBO_AH7ww0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431447018</pqid></control><display><type>article</type><title>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sohn, Yang-Sung ; Tamir, Sagi ; Song, Luhua ; Michaeli, Dorit ; Matouk, Imad ; Conlan, Andrea R. ; Harir, Yael ; Holt, Sarah H. ; Shulaev, Vladimir ; Paddock, Mark L. ; Hochberg, Abraham ; Cabanchick, Ioav Z. ; Onuchic, José N. ; Jennings, Patricia A. ; Nechushtai, Rachel ; Mittler, Ron</creator><creatorcontrib>Sohn, Yang-Sung ; Tamir, Sagi ; Song, Luhua ; Michaeli, Dorit ; Matouk, Imad ; Conlan, Andrea R. ; Harir, Yael ; Holt, Sarah H. ; Shulaev, Vladimir ; Paddock, Mark L. ; Hochberg, Abraham ; Cabanchick, Ioav Z. ; Onuchic, José N. ; Jennings, Patricia A. ; Nechushtai, Rachel ; Mittler, Ron</creatorcontrib><description>Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1313198110</identifier><identifier>PMID: 23959881</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; antineoplastic agents ; apoptosis ; autophagy ; Biological Sciences ; Breast cancer ; breast neoplasms ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cancer ; Cancer therapies ; Carcinogenesis - genetics ; Carcinogenesis - metabolism ; Cell culture techniques ; Cell growth ; Cell Line, Tumor ; Cell lines ; Cell Proliferation ; Cell Survival - drug effects ; Female ; Glycolysis - drug effects ; Homeostasis ; Humans ; Immunoblotting ; iron ; MCF-7 Cells ; Membrane Potential, Mitochondrial - drug effects ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; metabolism ; Mice ; Mice, Nude ; Microscopy, Electron, Transmission ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Mitochondrial membranes ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; neoplasm cells ; Oligomycins - pharmacology ; oxygen ; Pioglitazone ; proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA Interference ; RNA-protein interactions ; therapeutics ; Thiazolidinediones - pharmacology ; Transplantation, Heterologous ; Tumor Burden - genetics ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-09, Vol.110 (36), p.14676-14681</ispartof><rights>Copyright National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 3, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</citedby><cites>FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42713173$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42713173$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23959881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sohn, Yang-Sung</creatorcontrib><creatorcontrib>Tamir, Sagi</creatorcontrib><creatorcontrib>Song, Luhua</creatorcontrib><creatorcontrib>Michaeli, Dorit</creatorcontrib><creatorcontrib>Matouk, Imad</creatorcontrib><creatorcontrib>Conlan, Andrea R.</creatorcontrib><creatorcontrib>Harir, Yael</creatorcontrib><creatorcontrib>Holt, Sarah H.</creatorcontrib><creatorcontrib>Shulaev, Vladimir</creatorcontrib><creatorcontrib>Paddock, Mark L.</creatorcontrib><creatorcontrib>Hochberg, Abraham</creatorcontrib><creatorcontrib>Cabanchick, Ioav Z.</creatorcontrib><creatorcontrib>Onuchic, José N.</creatorcontrib><creatorcontrib>Jennings, Patricia A.</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><title>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.</description><subject>Animals</subject><subject>antineoplastic agents</subject><subject>apoptosis</subject><subject>autophagy</subject><subject>Biological Sciences</subject><subject>Breast cancer</subject><subject>breast neoplasms</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carcinogenesis - genetics</subject><subject>Carcinogenesis - metabolism</subject><subject>Cell culture techniques</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cell Proliferation</subject><subject>Cell Survival - drug effects</subject><subject>Female</subject><subject>Glycolysis - drug effects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>iron</subject><subject>MCF-7 Cells</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Mitochondrial membranes</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>neoplasm cells</subject><subject>Oligomycins - pharmacology</subject><subject>oxygen</subject><subject>Pioglitazone</subject><subject>proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA Interference</subject><subject>RNA-protein interactions</subject><subject>therapeutics</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Burden - genetics</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxSMEotvCmRNgqRcuaT22EzuXSlW1BaSqHGjPltdxNl4l9mI7oH4CvjbO7rL8kWX5ML95b8avKN4AvgDM6eXWqXgBNJ9GAOBnxQJwA2XNGvy8WGBMeCkYYSfFaYwbjHFTCfyyOCG0qRohYFH8vL--LQEp16LRJn-_XD4gFQzSxqWgBpQ86qdRObQKRsWEtHLaBLQNfrCdCSpZn2tPaFTWpXytW--EdO9dG2xW6P1ofEwq2rizya2jTzOXptEHtA7-R-pfFS86NUTz-vCeFY-3y4ebT-Xdl4-fb67vSl01kEpagWCKYWIEE11NodJYdStDNFGdbgklNdW80p2oKTcdr2peG9G1rVm1vK0UPSuu9rrbaTWa9rCm3AY7qvAkvbLy34qzvVz775LymleUZ4EPB4Hgv00mJjnaqM0wKGf8FCUITAEI4zSj5_-hGz8Fl9eTwCgwxjGITF3uKR18jMF0x2EAyzlkOYcs_4ScO979vcOR_51qBtABmDuPclmP1tk6_0lG3u6RTUw-HBlGeLbZzf5-X--Ul2odbJSPXwmGGmNgMBO_AH7ww0Y</recordid><startdate>20130903</startdate><enddate>20130903</enddate><creator>Sohn, Yang-Sung</creator><creator>Tamir, Sagi</creator><creator>Song, Luhua</creator><creator>Michaeli, Dorit</creator><creator>Matouk, Imad</creator><creator>Conlan, Andrea R.</creator><creator>Harir, Yael</creator><creator>Holt, Sarah H.</creator><creator>Shulaev, Vladimir</creator><creator>Paddock, Mark L.</creator><creator>Hochberg, Abraham</creator><creator>Cabanchick, Ioav Z.</creator><creator>Onuchic, José N.</creator><creator>Jennings, Patricia A.</creator><creator>Nechushtai, Rachel</creator><creator>Mittler, Ron</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130903</creationdate><title>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</title><author>Sohn, Yang-Sung ; Tamir, Sagi ; Song, Luhua ; Michaeli, Dorit ; Matouk, Imad ; Conlan, Andrea R. ; Harir, Yael ; Holt, Sarah H. ; Shulaev, Vladimir ; Paddock, Mark L. ; Hochberg, Abraham ; Cabanchick, Ioav Z. ; Onuchic, José N. ; Jennings, Patricia A. ; Nechushtai, Rachel ; Mittler, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-35184a402e848f6315c0afbe2c2afcd23263c75cf8637ef75676e8fddebd7d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>antineoplastic agents</topic><topic>apoptosis</topic><topic>autophagy</topic><topic>Biological Sciences</topic><topic>Breast cancer</topic><topic>breast neoplasms</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carcinogenesis - genetics</topic><topic>Carcinogenesis - metabolism</topic><topic>Cell culture techniques</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cell Proliferation</topic><topic>Cell Survival - drug effects</topic><topic>Female</topic><topic>Glycolysis - drug effects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>iron</topic><topic>MCF-7 Cells</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Mitochondrial membranes</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>neoplasm cells</topic><topic>Oligomycins - pharmacology</topic><topic>oxygen</topic><topic>Pioglitazone</topic><topic>proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA Interference</topic><topic>RNA-protein interactions</topic><topic>therapeutics</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Burden - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Yang-Sung</creatorcontrib><creatorcontrib>Tamir, Sagi</creatorcontrib><creatorcontrib>Song, Luhua</creatorcontrib><creatorcontrib>Michaeli, Dorit</creatorcontrib><creatorcontrib>Matouk, Imad</creatorcontrib><creatorcontrib>Conlan, Andrea R.</creatorcontrib><creatorcontrib>Harir, Yael</creatorcontrib><creatorcontrib>Holt, Sarah H.</creatorcontrib><creatorcontrib>Shulaev, Vladimir</creatorcontrib><creatorcontrib>Paddock, Mark L.</creatorcontrib><creatorcontrib>Hochberg, Abraham</creatorcontrib><creatorcontrib>Cabanchick, Ioav Z.</creatorcontrib><creatorcontrib>Onuchic, José N.</creatorcontrib><creatorcontrib>Jennings, Patricia A.</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Yang-Sung</au><au>Tamir, Sagi</au><au>Song, Luhua</au><au>Michaeli, Dorit</au><au>Matouk, Imad</au><au>Conlan, Andrea R.</au><au>Harir, Yael</au><au>Holt, Sarah H.</au><au>Shulaev, Vladimir</au><au>Paddock, Mark L.</au><au>Hochberg, Abraham</au><au>Cabanchick, Ioav Z.</au><au>Onuchic, José N.</au><au>Jennings, Patricia A.</au><au>Nechushtai, Rachel</au><au>Mittler, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-09-03</date><risdate>2013</risdate><volume>110</volume><issue>36</issue><spage>14676</spage><epage>14681</epage><pages>14676-14681</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23959881</pmid><doi>10.1073/pnas.1313198110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-09, Vol.110 (36), p.14676-14681
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767537
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
antineoplastic agents
apoptosis
autophagy
Biological Sciences
Breast cancer
breast neoplasms
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cancer
Cancer therapies
Carcinogenesis - genetics
Carcinogenesis - metabolism
Cell culture techniques
Cell growth
Cell Line, Tumor
Cell lines
Cell Proliferation
Cell Survival - drug effects
Female
Glycolysis - drug effects
Homeostasis
Humans
Immunoblotting
iron
MCF-7 Cells
Membrane Potential, Mitochondrial - drug effects
Membrane Proteins - genetics
Membrane Proteins - metabolism
metabolism
Mice
Mice, Nude
Microscopy, Electron, Transmission
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitochondrial membranes
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
neoplasm cells
Oligomycins - pharmacology
oxygen
Pioglitazone
proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
RNA Interference
RNA-protein interactions
therapeutics
Thiazolidinediones - pharmacology
Transplantation, Heterologous
Tumor Burden - genetics
Tumors
title NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NAF-1%20and%20mitoNEET%20are%20central%20to%20human%20breast%20cancer%20proliferation%20by%20maintaining%20mitochondrial%20homeostasis%20and%20promoting%20tumor%20growth&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sohn,%20Yang-Sung&rft.date=2013-09-03&rft.volume=110&rft.issue=36&rft.spage=14676&rft.epage=14681&rft.pages=14676-14681&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1313198110&rft_dat=%3Cjstor_pubme%3E42713173%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431447018&rft_id=info:pmid/23959881&rft_jstor_id=42713173&rfr_iscdi=true