NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data
RNA-seq, a massive parallel-sequencing-based transcriptome profiling method, provides digital data in the form of aligned sequence read counts. The comparative analyses of the data require appropriate statistical methods to estimate the differential expression of transcript variants across different...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2013-08, Vol.14 (1), p.262-262, Article 262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 1 |
container_start_page | 262 |
container_title | BMC bioinformatics |
container_volume | 14 |
creator | Bi, Yingtao Davuluri, Ramana V |
description | RNA-seq, a massive parallel-sequencing-based transcriptome profiling method, provides digital data in the form of aligned sequence read counts. The comparative analyses of the data require appropriate statistical methods to estimate the differential expression of transcript variants across different cell/tissue types and disease conditions.
We developed a novel nonparametric empirical Bayesian-based approach (NPEBseq) to model the RNA-seq data. The prior distribution of the Bayesian model is empirically estimated from the data without any parametric assumption, and hence the method is "nonparametric" in nature. Based on this model, we proposed a method for detecting differentially expressed genes across different conditions. We also extended this method to detect differential usage of exons from RNA-seq data. The evaluation of NPEBseq on both simulated and publicly available RNA-seq datasets and comparison with three popular methods showed improved results for experiments with or without biological replicates.
NPEBseq can successfully detect differential expression between different conditions not only at gene level but also at exon level from RNA-seq datasets. In addition, NPEBSeq performs significantly better than current methods and can be applied to genome-wide RNA-seq datasets. Sample datasets and R package are available at http://bioinformatics.wistar.upenn.edu/NPEBseq. |
doi_str_mv | 10.1186/1471-2105-14-262 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3765716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534515494</galeid><sourcerecordid>A534515494</sourcerecordid><originalsourceid>FETCH-LOGICAL-b651t-403d3662468ea0a032a16edd4aa88dd60a2bdbe22b9341e7de799c36c81543ce3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw54QicYFDir_iJBwqLasClaqCCpytSTxZXCV2aieo--9xtGVpUBHIh7E8z7xjv-MkeU7JMaWlfENFQTNGSZ5RkTHJHiSH-6OHd_YHyZMQrgihRUnyx8kB41VJGSsOE3vx-fRdwOu3qXV2AA89jt40KfaDiRG6tIYtBgM2qyGgTgfvGtSTx7R1PtWmbdGjHU0k8WbwGIJxNgUL3TaYkLo2vbxYZbFDqmGEp8mjFrqAz27jUfLt_enX9cfs_NOHs_XqPKtlTsdMEK65lEzIEoEA4QyoRK0FQFlqLQmwWtfIWF1xQbHQWFRVw2VT0lzwBvlRcrLTHaa6R93EG3ro1OBND36rHBi1zFjzXW3cD8ULmRdURoH1TqA27i8Cy0zjejX7rWa_407FcUSVV7fX8O56wjCq3oQGuw4suikoKgsqSsIp_Tcq8ormpaTiP1AeDaSEFRF9-Qd65SYfhzNTrMqZLDn_TW2gQ2Vs6-KTmllUrXIu8mhqNbc9voeKS2NvGmexNfF8UfB6URCZEW_GDUwhqLMvl0uW7NjGuxA8tnurKVHzX7_P3Bd3Z7wv-PW5-U-IRPfG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429526833</pqid></control><display><type>article</type><title>NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bi, Yingtao ; Davuluri, Ramana V</creator><creatorcontrib>Bi, Yingtao ; Davuluri, Ramana V</creatorcontrib><description>RNA-seq, a massive parallel-sequencing-based transcriptome profiling method, provides digital data in the form of aligned sequence read counts. The comparative analyses of the data require appropriate statistical methods to estimate the differential expression of transcript variants across different cell/tissue types and disease conditions.
We developed a novel nonparametric empirical Bayesian-based approach (NPEBseq) to model the RNA-seq data. The prior distribution of the Bayesian model is empirically estimated from the data without any parametric assumption, and hence the method is "nonparametric" in nature. Based on this model, we proposed a method for detecting differentially expressed genes across different conditions. We also extended this method to detect differential usage of exons from RNA-seq data. The evaluation of NPEBseq on both simulated and publicly available RNA-seq datasets and comparison with three popular methods showed improved results for experiments with or without biological replicates.
NPEBseq can successfully detect differential expression between different conditions not only at gene level but also at exon level from RNA-seq datasets. In addition, NPEBSeq performs significantly better than current methods and can be applied to genome-wide RNA-seq datasets. Sample datasets and R package are available at http://bioinformatics.wistar.upenn.edu/NPEBseq.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-14-262</identifier><identifier>PMID: 23981227</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian statistical decision theory ; Binomial distribution ; Bioinformatics ; Comparative analysis ; Computational Biology - methods ; Counting ; Digital data ; DNA binding proteins ; Empirical analysis ; Gene expression ; Gene Expression Profiling - methods ; Generalized linear models ; Genes ; Genomics ; High-Throughput Nucleotide Sequencing ; Packages ; RNA - analysis ; RNA - genetics ; RNA sequencing ; Sequence Alignment ; Sequence Analysis, RNA - methods ; Software ; Statistical methods ; Statistics, Nonparametric ; Studies</subject><ispartof>BMC bioinformatics, 2013-08, Vol.14 (1), p.262-262, Article 262</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Bi and Davuluri; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 Bi and Davuluri; licensee BioMed Central Ltd. 2013 Bi and Davuluri; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b651t-403d3662468ea0a032a16edd4aa88dd60a2bdbe22b9341e7de799c36c81543ce3</citedby><cites>FETCH-LOGICAL-b651t-403d3662468ea0a032a16edd4aa88dd60a2bdbe22b9341e7de799c36c81543ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765716/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765716/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23981227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Yingtao</creatorcontrib><creatorcontrib>Davuluri, Ramana V</creatorcontrib><title>NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>RNA-seq, a massive parallel-sequencing-based transcriptome profiling method, provides digital data in the form of aligned sequence read counts. The comparative analyses of the data require appropriate statistical methods to estimate the differential expression of transcript variants across different cell/tissue types and disease conditions.
We developed a novel nonparametric empirical Bayesian-based approach (NPEBseq) to model the RNA-seq data. The prior distribution of the Bayesian model is empirically estimated from the data without any parametric assumption, and hence the method is "nonparametric" in nature. Based on this model, we proposed a method for detecting differentially expressed genes across different conditions. We also extended this method to detect differential usage of exons from RNA-seq data. The evaluation of NPEBseq on both simulated and publicly available RNA-seq datasets and comparison with three popular methods showed improved results for experiments with or without biological replicates.
NPEBseq can successfully detect differential expression between different conditions not only at gene level but also at exon level from RNA-seq datasets. In addition, NPEBSeq performs significantly better than current methods and can be applied to genome-wide RNA-seq datasets. Sample datasets and R package are available at http://bioinformatics.wistar.upenn.edu/NPEBseq.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian statistical decision theory</subject><subject>Binomial distribution</subject><subject>Bioinformatics</subject><subject>Comparative analysis</subject><subject>Computational Biology - methods</subject><subject>Counting</subject><subject>Digital data</subject><subject>DNA binding proteins</subject><subject>Empirical analysis</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Generalized linear models</subject><subject>Genes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Packages</subject><subject>RNA - analysis</subject><subject>RNA - genetics</subject><subject>RNA sequencing</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Statistics, Nonparametric</subject><subject>Studies</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw54QicYFDir_iJBwqLasClaqCCpytSTxZXCV2aieo--9xtGVpUBHIh7E8z7xjv-MkeU7JMaWlfENFQTNGSZ5RkTHJHiSH-6OHd_YHyZMQrgihRUnyx8kB41VJGSsOE3vx-fRdwOu3qXV2AA89jt40KfaDiRG6tIYtBgM2qyGgTgfvGtSTx7R1PtWmbdGjHU0k8WbwGIJxNgUL3TaYkLo2vbxYZbFDqmGEp8mjFrqAz27jUfLt_enX9cfs_NOHs_XqPKtlTsdMEK65lEzIEoEA4QyoRK0FQFlqLQmwWtfIWF1xQbHQWFRVw2VT0lzwBvlRcrLTHaa6R93EG3ro1OBND36rHBi1zFjzXW3cD8ULmRdURoH1TqA27i8Cy0zjejX7rWa_407FcUSVV7fX8O56wjCq3oQGuw4suikoKgsqSsIp_Tcq8ormpaTiP1AeDaSEFRF9-Qd65SYfhzNTrMqZLDn_TW2gQ2Vs6-KTmllUrXIu8mhqNbc9voeKS2NvGmexNfF8UfB6URCZEW_GDUwhqLMvl0uW7NjGuxA8tnurKVHzX7_P3Bd3Z7wv-PW5-U-IRPfG</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Bi, Yingtao</creator><creator>Davuluri, Ramana V</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130827</creationdate><title>NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data</title><author>Bi, Yingtao ; Davuluri, Ramana V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b651t-403d3662468ea0a032a16edd4aa88dd60a2bdbe22b9341e7de799c36c81543ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian statistical decision theory</topic><topic>Binomial distribution</topic><topic>Bioinformatics</topic><topic>Comparative analysis</topic><topic>Computational Biology - methods</topic><topic>Counting</topic><topic>Digital data</topic><topic>DNA binding proteins</topic><topic>Empirical analysis</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Generalized linear models</topic><topic>Genes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Packages</topic><topic>RNA - analysis</topic><topic>RNA - genetics</topic><topic>RNA sequencing</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Statistics, Nonparametric</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Yingtao</creatorcontrib><creatorcontrib>Davuluri, Ramana V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Yingtao</au><au>Davuluri, Ramana V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>262</spage><epage>262</epage><pages>262-262</pages><artnum>262</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>RNA-seq, a massive parallel-sequencing-based transcriptome profiling method, provides digital data in the form of aligned sequence read counts. The comparative analyses of the data require appropriate statistical methods to estimate the differential expression of transcript variants across different cell/tissue types and disease conditions.
We developed a novel nonparametric empirical Bayesian-based approach (NPEBseq) to model the RNA-seq data. The prior distribution of the Bayesian model is empirically estimated from the data without any parametric assumption, and hence the method is "nonparametric" in nature. Based on this model, we proposed a method for detecting differentially expressed genes across different conditions. We also extended this method to detect differential usage of exons from RNA-seq data. The evaluation of NPEBseq on both simulated and publicly available RNA-seq datasets and comparison with three popular methods showed improved results for experiments with or without biological replicates.
NPEBseq can successfully detect differential expression between different conditions not only at gene level but also at exon level from RNA-seq datasets. In addition, NPEBSeq performs significantly better than current methods and can be applied to genome-wide RNA-seq datasets. Sample datasets and R package are available at http://bioinformatics.wistar.upenn.edu/NPEBseq.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23981227</pmid><doi>10.1186/1471-2105-14-262</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2013-08, Vol.14 (1), p.262-262, Article 262 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3765716 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bayes Theorem Bayesian analysis Bayesian statistical decision theory Binomial distribution Bioinformatics Comparative analysis Computational Biology - methods Counting Digital data DNA binding proteins Empirical analysis Gene expression Gene Expression Profiling - methods Generalized linear models Genes Genomics High-Throughput Nucleotide Sequencing Packages RNA - analysis RNA - genetics RNA sequencing Sequence Alignment Sequence Analysis, RNA - methods Software Statistical methods Statistics, Nonparametric Studies |
title | NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NPEBseq:%20nonparametric%20empirical%20bayesian-based%20procedure%20for%20differential%20expression%20analysis%20of%20RNA-seq%20data&rft.jtitle=BMC%20bioinformatics&rft.au=Bi,%20Yingtao&rft.date=2013-08-27&rft.volume=14&rft.issue=1&rft.spage=262&rft.epage=262&rft.pages=262-262&rft.artnum=262&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-14-262&rft_dat=%3Cgale_pubme%3EA534515494%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429526833&rft_id=info:pmid/23981227&rft_galeid=A534515494&rfr_iscdi=true |