Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons

Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How end...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-09, Vol.288 (36), p.25689-25700
Hauptverfasser: Zhao, Peishen, Canals, Meritxell, Murphy, Jane E., Klingler, Diana, Eriksson, Emily M., Pelayo, Juan-Carlos, Hardt, Markus, Bunnett, Nigel W., Poole, Daniel P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25700
container_issue 36
container_start_page 25689
container_title The Journal of biological chemistry
container_volume 288
creator Zhao, Peishen
Canals, Meritxell
Murphy, Jane E.
Klingler, Diana
Eriksson, Emily M.
Pelayo, Juan-Carlos
Hardt, Markus
Bunnett, Nigel W.
Poole, Daniel P.
description Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions. Background: Somatostatin regulates gut function via neuronal somatostatin receptors. Results: Somatostatin susceptibility to degradation by endosomal endothelin-converting enzyme 1 (ECE-1) defines receptor function. Conclusion: ECE-1 regulates the duration of somatostatin receptor signaling and trafficking. Significance: Therapeutic somatostatin analogs are ECE-1-resistant, which underlies their prolonged actions.
doi_str_mv 10.1074/jbc.M113.496414
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3764777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820535692</els_id><sourcerecordid>23913690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-fe5c259efbac4fe9ad80f17306b7c7b6f3fb304d168ccd0cf8ff3e4041b515bc3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWj_O3mT_wNZkk_3IRSilaqEqaAVvIZmd1KjdlCQt-O9dqYoenMswzPu-wzyEnDI6ZLQW5y8GhjeM8aGQlWBihwwYbXjOS_a0SwaUFiyXRdkckMMYX2hfQrJ9clBwyXgl6YBMRwvfuZhy43TENpsHba2DV9ctMm-zB7_Uycekk-uyewRcJR-yYpT146RLGBxkt7gOvovHZM_qt4gnX_2IPF5O5uPrfHZ3NR2PZjmUVKbcYglFKdEaDcKi1G1DLas5rUwNtakst4ZT0bKqAWgp2MZajoIKZkpWGuBH5GKbu1qbJbaAXQr6Ta2CW-rwrrx26u-mc89q4TeK15Wo67oPON8GQPAxBrQ_XkbVJ1XVU1WfVNWWau84-33yR_-NsRfIrQD7xzcOg4rgsANsXUBIqvXu3_APeOWJJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhao, Peishen ; Canals, Meritxell ; Murphy, Jane E. ; Klingler, Diana ; Eriksson, Emily M. ; Pelayo, Juan-Carlos ; Hardt, Markus ; Bunnett, Nigel W. ; Poole, Daniel P.</creator><creatorcontrib>Zhao, Peishen ; Canals, Meritxell ; Murphy, Jane E. ; Klingler, Diana ; Eriksson, Emily M. ; Pelayo, Juan-Carlos ; Hardt, Markus ; Bunnett, Nigel W. ; Poole, Daniel P.</creatorcontrib><description>Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions. Background: Somatostatin regulates gut function via neuronal somatostatin receptors. Results: Somatostatin susceptibility to degradation by endosomal endothelin-converting enzyme 1 (ECE-1) defines receptor function. Conclusion: ECE-1 regulates the duration of somatostatin receptor signaling and trafficking. Significance: Therapeutic somatostatin analogs are ECE-1-resistant, which underlies their prolonged actions.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.496414</identifier><identifier>PMID: 23913690</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Arrestin ; Arrestins - genetics ; Arrestins - metabolism ; Aspartic Acid Endopeptidases - genetics ; Aspartic Acid Endopeptidases - metabolism ; beta-Arrestins ; Cell Line, Tumor ; Endocytosis ; Endosomes - genetics ; Endosomes - metabolism ; Endothelin-converting Enzyme ; Endothelin-Converting Enzymes ; Enteric Nervous System - metabolism ; Female ; Gastrointestinal Agents - pharmacology ; Golgi Apparatus - genetics ; Golgi Apparatus - metabolism ; Male ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Mice ; Neurobiology ; Neurons ; Neurons - metabolism ; Neuropeptide ; Octreotide - pharmacokinetics ; Protein Transport ; Proteolysis ; Rats ; Rats, Sprague-Dawley ; Receptor Recycling ; Receptors, Somatostatin - agonists ; Receptors, Somatostatin - genetics ; Receptors, Somatostatin - metabolism ; Somatostatin ; Somatostatin - genetics ; Somatostatin - metabolism ; Somatostatin-28 - genetics ; Somatostatin-28 - metabolism</subject><ispartof>The Journal of biological chemistry, 2013-09, Vol.288 (36), p.25689-25700</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-fe5c259efbac4fe9ad80f17306b7c7b6f3fb304d168ccd0cf8ff3e4041b515bc3</citedby><cites>FETCH-LOGICAL-c509t-fe5c259efbac4fe9ad80f17306b7c7b6f3fb304d168ccd0cf8ff3e4041b515bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764777/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764777/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23913690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Peishen</creatorcontrib><creatorcontrib>Canals, Meritxell</creatorcontrib><creatorcontrib>Murphy, Jane E.</creatorcontrib><creatorcontrib>Klingler, Diana</creatorcontrib><creatorcontrib>Eriksson, Emily M.</creatorcontrib><creatorcontrib>Pelayo, Juan-Carlos</creatorcontrib><creatorcontrib>Hardt, Markus</creatorcontrib><creatorcontrib>Bunnett, Nigel W.</creatorcontrib><creatorcontrib>Poole, Daniel P.</creatorcontrib><title>Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions. Background: Somatostatin regulates gut function via neuronal somatostatin receptors. Results: Somatostatin susceptibility to degradation by endosomal endothelin-converting enzyme 1 (ECE-1) defines receptor function. Conclusion: ECE-1 regulates the duration of somatostatin receptor signaling and trafficking. Significance: Therapeutic somatostatin analogs are ECE-1-resistant, which underlies their prolonged actions.</description><subject>Animals</subject><subject>Arrestin</subject><subject>Arrestins - genetics</subject><subject>Arrestins - metabolism</subject><subject>Aspartic Acid Endopeptidases - genetics</subject><subject>Aspartic Acid Endopeptidases - metabolism</subject><subject>beta-Arrestins</subject><subject>Cell Line, Tumor</subject><subject>Endocytosis</subject><subject>Endosomes - genetics</subject><subject>Endosomes - metabolism</subject><subject>Endothelin-converting Enzyme</subject><subject>Endothelin-Converting Enzymes</subject><subject>Enteric Nervous System - metabolism</subject><subject>Female</subject><subject>Gastrointestinal Agents - pharmacology</subject><subject>Golgi Apparatus - genetics</subject><subject>Golgi Apparatus - metabolism</subject><subject>Male</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mice</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neuropeptide</subject><subject>Octreotide - pharmacokinetics</subject><subject>Protein Transport</subject><subject>Proteolysis</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor Recycling</subject><subject>Receptors, Somatostatin - agonists</subject><subject>Receptors, Somatostatin - genetics</subject><subject>Receptors, Somatostatin - metabolism</subject><subject>Somatostatin</subject><subject>Somatostatin - genetics</subject><subject>Somatostatin - metabolism</subject><subject>Somatostatin-28 - genetics</subject><subject>Somatostatin-28 - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMoWj_O3mT_wNZkk_3IRSilaqEqaAVvIZmd1KjdlCQt-O9dqYoenMswzPu-wzyEnDI6ZLQW5y8GhjeM8aGQlWBihwwYbXjOS_a0SwaUFiyXRdkckMMYX2hfQrJ9clBwyXgl6YBMRwvfuZhy43TENpsHba2DV9ctMm-zB7_Uycekk-uyewRcJR-yYpT146RLGBxkt7gOvovHZM_qt4gnX_2IPF5O5uPrfHZ3NR2PZjmUVKbcYglFKdEaDcKi1G1DLas5rUwNtakst4ZT0bKqAWgp2MZajoIKZkpWGuBH5GKbu1qbJbaAXQr6Ta2CW-rwrrx26u-mc89q4TeK15Wo67oPON8GQPAxBrQ_XkbVJ1XVU1WfVNWWau84-33yR_-NsRfIrQD7xzcOg4rgsANsXUBIqvXu3_APeOWJJA</recordid><startdate>20130906</startdate><enddate>20130906</enddate><creator>Zhao, Peishen</creator><creator>Canals, Meritxell</creator><creator>Murphy, Jane E.</creator><creator>Klingler, Diana</creator><creator>Eriksson, Emily M.</creator><creator>Pelayo, Juan-Carlos</creator><creator>Hardt, Markus</creator><creator>Bunnett, Nigel W.</creator><creator>Poole, Daniel P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130906</creationdate><title>Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons</title><author>Zhao, Peishen ; Canals, Meritxell ; Murphy, Jane E. ; Klingler, Diana ; Eriksson, Emily M. ; Pelayo, Juan-Carlos ; Hardt, Markus ; Bunnett, Nigel W. ; Poole, Daniel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-fe5c259efbac4fe9ad80f17306b7c7b6f3fb304d168ccd0cf8ff3e4041b515bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Arrestin</topic><topic>Arrestins - genetics</topic><topic>Arrestins - metabolism</topic><topic>Aspartic Acid Endopeptidases - genetics</topic><topic>Aspartic Acid Endopeptidases - metabolism</topic><topic>beta-Arrestins</topic><topic>Cell Line, Tumor</topic><topic>Endocytosis</topic><topic>Endosomes - genetics</topic><topic>Endosomes - metabolism</topic><topic>Endothelin-converting Enzyme</topic><topic>Endothelin-Converting Enzymes</topic><topic>Enteric Nervous System - metabolism</topic><topic>Female</topic><topic>Gastrointestinal Agents - pharmacology</topic><topic>Golgi Apparatus - genetics</topic><topic>Golgi Apparatus - metabolism</topic><topic>Male</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mice</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neuropeptide</topic><topic>Octreotide - pharmacokinetics</topic><topic>Protein Transport</topic><topic>Proteolysis</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor Recycling</topic><topic>Receptors, Somatostatin - agonists</topic><topic>Receptors, Somatostatin - genetics</topic><topic>Receptors, Somatostatin - metabolism</topic><topic>Somatostatin</topic><topic>Somatostatin - genetics</topic><topic>Somatostatin - metabolism</topic><topic>Somatostatin-28 - genetics</topic><topic>Somatostatin-28 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Peishen</creatorcontrib><creatorcontrib>Canals, Meritxell</creatorcontrib><creatorcontrib>Murphy, Jane E.</creatorcontrib><creatorcontrib>Klingler, Diana</creatorcontrib><creatorcontrib>Eriksson, Emily M.</creatorcontrib><creatorcontrib>Pelayo, Juan-Carlos</creatorcontrib><creatorcontrib>Hardt, Markus</creatorcontrib><creatorcontrib>Bunnett, Nigel W.</creatorcontrib><creatorcontrib>Poole, Daniel P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Peishen</au><au>Canals, Meritxell</au><au>Murphy, Jane E.</au><au>Klingler, Diana</au><au>Eriksson, Emily M.</au><au>Pelayo, Juan-Carlos</au><au>Hardt, Markus</au><au>Bunnett, Nigel W.</au><au>Poole, Daniel P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-09-06</date><risdate>2013</risdate><volume>288</volume><issue>36</issue><spage>25689</spage><epage>25700</epage><pages>25689-25700</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions. Background: Somatostatin regulates gut function via neuronal somatostatin receptors. Results: Somatostatin susceptibility to degradation by endosomal endothelin-converting enzyme 1 (ECE-1) defines receptor function. Conclusion: ECE-1 regulates the duration of somatostatin receptor signaling and trafficking. Significance: Therapeutic somatostatin analogs are ECE-1-resistant, which underlies their prolonged actions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23913690</pmid><doi>10.1074/jbc.M113.496414</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-09, Vol.288 (36), p.25689-25700
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3764777
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Arrestin
Arrestins - genetics
Arrestins - metabolism
Aspartic Acid Endopeptidases - genetics
Aspartic Acid Endopeptidases - metabolism
beta-Arrestins
Cell Line, Tumor
Endocytosis
Endosomes - genetics
Endosomes - metabolism
Endothelin-converting Enzyme
Endothelin-Converting Enzymes
Enteric Nervous System - metabolism
Female
Gastrointestinal Agents - pharmacology
Golgi Apparatus - genetics
Golgi Apparatus - metabolism
Male
Metalloendopeptidases - genetics
Metalloendopeptidases - metabolism
Mice
Neurobiology
Neurons
Neurons - metabolism
Neuropeptide
Octreotide - pharmacokinetics
Protein Transport
Proteolysis
Rats
Rats, Sprague-Dawley
Receptor Recycling
Receptors, Somatostatin - agonists
Receptors, Somatostatin - genetics
Receptors, Somatostatin - metabolism
Somatostatin
Somatostatin - genetics
Somatostatin - metabolism
Somatostatin-28 - genetics
Somatostatin-28 - metabolism
title Agonist-biased Trafficking of Somatostatin Receptor 2A in Enteric Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agonist-biased%20Trafficking%20of%20Somatostatin%20Receptor%202A%20in%20Enteric%20Neurons&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Zhao,%20Peishen&rft.date=2013-09-06&rft.volume=288&rft.issue=36&rft.spage=25689&rft.epage=25700&rft.pages=25689-25700&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.496414&rft_dat=%3Cpubmed_cross%3E23913690%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23913690&rft_els_id=S0021925820535692&rfr_iscdi=true