Laser-induced rotation and cooling of a trapped microgyroscope in vacuum
Quantum state preparation of mesoscopic objects is a powerful playground for the elucidation of many physical principles. The field of cavity optomechanics aims to create these states through laser cooling and by minimizing state decoherence. Here we demonstrate simultaneous optical trapping and rot...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013-08, Vol.4 (1), p.2374-2374, Article 2374 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum state preparation of mesoscopic objects is a powerful playground for the elucidation of many physical principles. The field of cavity optomechanics aims to create these states through laser cooling and by minimizing state decoherence. Here we demonstrate simultaneous optical trapping and rotation of a birefringent microparticle in vacuum using a circularly polarized trapping laser beam—a microgyroscope. We show stable rotation rates up to 5 MHz. Coupling between the rotational and translational degrees of freedom of the trapped microgyroscope leads to the observation of positional stabilization in effect cooling the particle to 40 K. We attribute this cooling to the interaction between the gyroscopic directional stabilization and the optical trapping field.
Quantum state preparation of mesoscopic objects is a powerful tool for the study of physics at the limits. Here, Arita
et al
. realise the optical trapping of a microgyroscope rotating at MHz rates in vacuum where the coupling between the rotational and translational motion cools the particle to 40 K. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms3374 |