Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in?
Heat is the most abundant byproduct of cellular metabolism. As such, dynamic exercise in which a significant percentage of muscle mass is engaged generates thermoregulatory demands that are met in part by increases in skin blood flow. Increased skin blood flow during exercise adds to the demands on...
Gespeichert in:
Veröffentlicht in: | Experimental physiology 2011-09, Vol.96 (9), p.822-828 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 828 |
---|---|
container_issue | 9 |
container_start_page | 822 |
container_title | Experimental physiology |
container_volume | 96 |
creator | Simmons, Grant H. Wong, Brett J. Holowatz, Lacy A. Kenney, W. Larry |
description | Heat is the most abundant byproduct of cellular metabolism. As such, dynamic exercise in which a significant percentage of muscle mass is engaged generates thermoregulatory demands that are met in part by increases in skin blood flow. Increased skin blood flow during exercise adds to the demands on cardiac output and confers additional circulatory strain beyond that associated with perfusion of active muscle alone. Endurance exercise training results in a number of physiological adaptations which ultimately reduce circulatory strain and shift thermoregulatory control of skin blood flow to higher levels of blood flow for a given core temperature. In addition, exercise training induces peripheral vascular adaptations within the cutaneous microvasculature indicative of enhanced endothelium‐dependent vasomotor function. However, it is not currently clear how (or if) these local vascular adaptations contribute to the beneficial changes in thermoregulatory control of skin blood flow following exercise training. The purpose of this Hot Topic Review is to synthesize the literature pertaining to exercise training‐mediated changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow. In addition, we address mechanisms driving changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow, and pose the question: what (if any) is the functional role of increased cutaneous microvascular reactivity following exercise training? |
doi_str_mv | 10.1113/expphysiol.2010.056176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3754812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837335366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4774-b6a363f51ee1b3febc720d3b5c27d8b9e20459f4f07390d99744d50e99e315073</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EokPhL1QWG9ik2PEr7gKERqWtVAkWILGznORm4uKJUzvpdP49Hk0flEVXls79dO7DB6EjSo4ppewT3I5jv00u-OOSZJEISZV8gRaUS11wLn6_RAuiRVUQqcgBepPSFSGUkYq_RgcllaQstVig62VvhxUk7AY89YCbMEwxeBw6nP5krfYhtLjzYYM3buox3EJsXAI8ResGN6xO8KaHCLgNuJknO0CYE76xqZm9jdi2dpzs5MKQcOem3OXLW_Sqsz7Bu7v3EP36dvpzeV5cfj-7WH69LBquFC9qaZlknaAAtGYd1I0qSctq0ZSqrWoNJeFCd7wjimnSaq04bwUBrYFRkcVD9HnvO871GtoG8mLWmzG6tY1bE6wzTyuD680q3BimBK9omQ0-3BnEcD1DmszapQa83y9pqkqIfEalM_nxWZJWTDEmmJQZff8fehXmOORD7PyIJlzuOh_9O_rDzPffloGTPbBxHrYPdUrMLhzmMRxmFw6zD4c5_XGuS87-AsibsPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885090462</pqid></control><display><type>article</type><title>Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in?</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Simmons, Grant H. ; Wong, Brett J. ; Holowatz, Lacy A. ; Kenney, W. Larry</creator><creatorcontrib>Simmons, Grant H. ; Wong, Brett J. ; Holowatz, Lacy A. ; Kenney, W. Larry</creatorcontrib><description>Heat is the most abundant byproduct of cellular metabolism. As such, dynamic exercise in which a significant percentage of muscle mass is engaged generates thermoregulatory demands that are met in part by increases in skin blood flow. Increased skin blood flow during exercise adds to the demands on cardiac output and confers additional circulatory strain beyond that associated with perfusion of active muscle alone. Endurance exercise training results in a number of physiological adaptations which ultimately reduce circulatory strain and shift thermoregulatory control of skin blood flow to higher levels of blood flow for a given core temperature. In addition, exercise training induces peripheral vascular adaptations within the cutaneous microvasculature indicative of enhanced endothelium‐dependent vasomotor function. However, it is not currently clear how (or if) these local vascular adaptations contribute to the beneficial changes in thermoregulatory control of skin blood flow following exercise training. The purpose of this Hot Topic Review is to synthesize the literature pertaining to exercise training‐mediated changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow. In addition, we address mechanisms driving changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow, and pose the question: what (if any) is the functional role of increased cutaneous microvascular reactivity following exercise training?</description><identifier>ISSN: 0958-0670</identifier><identifier>EISSN: 1469-445X</identifier><identifier>DOI: 10.1113/expphysiol.2010.056176</identifier><identifier>PMID: 21602295</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylcholine - administration & dosage ; Adaptation, Physiological - physiology ; Aging ; Body Temperature Regulation - physiology ; Exercise - physiology ; Humans ; Hyperemia - physiopathology ; Iontophoresis ; Nitroprusside ; Physical Endurance ; Regional Blood Flow - physiology ; Skin - blood supply</subject><ispartof>Experimental physiology, 2011-09, Vol.96 (9), p.822-828</ispartof><rights>2011 The Authors. Journal compilation © 2011 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4774-b6a363f51ee1b3febc720d3b5c27d8b9e20459f4f07390d99744d50e99e315073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1113%2Fexpphysiol.2010.056176$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1113%2Fexpphysiol.2010.056176$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21602295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simmons, Grant H.</creatorcontrib><creatorcontrib>Wong, Brett J.</creatorcontrib><creatorcontrib>Holowatz, Lacy A.</creatorcontrib><creatorcontrib>Kenney, W. Larry</creatorcontrib><title>Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in?</title><title>Experimental physiology</title><addtitle>Exp Physiol</addtitle><description>Heat is the most abundant byproduct of cellular metabolism. As such, dynamic exercise in which a significant percentage of muscle mass is engaged generates thermoregulatory demands that are met in part by increases in skin blood flow. Increased skin blood flow during exercise adds to the demands on cardiac output and confers additional circulatory strain beyond that associated with perfusion of active muscle alone. Endurance exercise training results in a number of physiological adaptations which ultimately reduce circulatory strain and shift thermoregulatory control of skin blood flow to higher levels of blood flow for a given core temperature. In addition, exercise training induces peripheral vascular adaptations within the cutaneous microvasculature indicative of enhanced endothelium‐dependent vasomotor function. However, it is not currently clear how (or if) these local vascular adaptations contribute to the beneficial changes in thermoregulatory control of skin blood flow following exercise training. The purpose of this Hot Topic Review is to synthesize the literature pertaining to exercise training‐mediated changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow. In addition, we address mechanisms driving changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow, and pose the question: what (if any) is the functional role of increased cutaneous microvascular reactivity following exercise training?</description><subject>Acetylcholine - administration & dosage</subject><subject>Adaptation, Physiological - physiology</subject><subject>Aging</subject><subject>Body Temperature Regulation - physiology</subject><subject>Exercise - physiology</subject><subject>Humans</subject><subject>Hyperemia - physiopathology</subject><subject>Iontophoresis</subject><subject>Nitroprusside</subject><subject>Physical Endurance</subject><subject>Regional Blood Flow - physiology</subject><subject>Skin - blood supply</subject><issn>0958-0670</issn><issn>1469-445X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kktv1DAUhS0EokPhL1QWG9ik2PEr7gKERqWtVAkWILGznORm4uKJUzvpdP49Hk0flEVXls79dO7DB6EjSo4ppewT3I5jv00u-OOSZJEISZV8gRaUS11wLn6_RAuiRVUQqcgBepPSFSGUkYq_RgcllaQstVig62VvhxUk7AY89YCbMEwxeBw6nP5krfYhtLjzYYM3buox3EJsXAI8ResGN6xO8KaHCLgNuJknO0CYE76xqZm9jdi2dpzs5MKQcOem3OXLW_Sqsz7Bu7v3EP36dvpzeV5cfj-7WH69LBquFC9qaZlknaAAtGYd1I0qSctq0ZSqrWoNJeFCd7wjimnSaq04bwUBrYFRkcVD9HnvO871GtoG8mLWmzG6tY1bE6wzTyuD680q3BimBK9omQ0-3BnEcD1DmszapQa83y9pqkqIfEalM_nxWZJWTDEmmJQZff8fehXmOORD7PyIJlzuOh_9O_rDzPffloGTPbBxHrYPdUrMLhzmMRxmFw6zD4c5_XGuS87-AsibsPM</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Simmons, Grant H.</creator><creator>Wong, Brett J.</creator><creator>Holowatz, Lacy A.</creator><creator>Kenney, W. Larry</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201109</creationdate><title>Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in?</title><author>Simmons, Grant H. ; Wong, Brett J. ; Holowatz, Lacy A. ; Kenney, W. Larry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4774-b6a363f51ee1b3febc720d3b5c27d8b9e20459f4f07390d99744d50e99e315073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylcholine - administration & dosage</topic><topic>Adaptation, Physiological - physiology</topic><topic>Aging</topic><topic>Body Temperature Regulation - physiology</topic><topic>Exercise - physiology</topic><topic>Humans</topic><topic>Hyperemia - physiopathology</topic><topic>Iontophoresis</topic><topic>Nitroprusside</topic><topic>Physical Endurance</topic><topic>Regional Blood Flow - physiology</topic><topic>Skin - blood supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simmons, Grant H.</creatorcontrib><creatorcontrib>Wong, Brett J.</creatorcontrib><creatorcontrib>Holowatz, Lacy A.</creatorcontrib><creatorcontrib>Kenney, W. Larry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmons, Grant H.</au><au>Wong, Brett J.</au><au>Holowatz, Lacy A.</au><au>Kenney, W. Larry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in?</atitle><jtitle>Experimental physiology</jtitle><addtitle>Exp Physiol</addtitle><date>2011-09</date><risdate>2011</risdate><volume>96</volume><issue>9</issue><spage>822</spage><epage>828</epage><pages>822-828</pages><issn>0958-0670</issn><eissn>1469-445X</eissn><abstract>Heat is the most abundant byproduct of cellular metabolism. As such, dynamic exercise in which a significant percentage of muscle mass is engaged generates thermoregulatory demands that are met in part by increases in skin blood flow. Increased skin blood flow during exercise adds to the demands on cardiac output and confers additional circulatory strain beyond that associated with perfusion of active muscle alone. Endurance exercise training results in a number of physiological adaptations which ultimately reduce circulatory strain and shift thermoregulatory control of skin blood flow to higher levels of blood flow for a given core temperature. In addition, exercise training induces peripheral vascular adaptations within the cutaneous microvasculature indicative of enhanced endothelium‐dependent vasomotor function. However, it is not currently clear how (or if) these local vascular adaptations contribute to the beneficial changes in thermoregulatory control of skin blood flow following exercise training. The purpose of this Hot Topic Review is to synthesize the literature pertaining to exercise training‐mediated changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow. In addition, we address mechanisms driving changes in cutaneous microvascular reactivity and thermoregulatory control of skin blood flow, and pose the question: what (if any) is the functional role of increased cutaneous microvascular reactivity following exercise training?</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21602295</pmid><doi>10.1113/expphysiol.2010.056176</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-0670 |
ispartof | Experimental physiology, 2011-09, Vol.96 (9), p.822-828 |
issn | 0958-0670 1469-445X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3754812 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acetylcholine - administration & dosage Adaptation, Physiological - physiology Aging Body Temperature Regulation - physiology Exercise - physiology Humans Hyperemia - physiopathology Iontophoresis Nitroprusside Physical Endurance Regional Blood Flow - physiology Skin - blood supply |
title | Changes in the control of skin blood flow with exercise training: where do cutaneous vascular adaptations fit in? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20the%20control%20of%20skin%20blood%20flow%20with%20exercise%20training:%20where%20do%20cutaneous%20vascular%20adaptations%20fit%20in?&rft.jtitle=Experimental%20physiology&rft.au=Simmons,%20Grant%20H.&rft.date=2011-09&rft.volume=96&rft.issue=9&rft.spage=822&rft.epage=828&rft.pages=822-828&rft.issn=0958-0670&rft.eissn=1469-445X&rft_id=info:doi/10.1113/expphysiol.2010.056176&rft_dat=%3Cproquest_pubme%3E1837335366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885090462&rft_id=info:pmid/21602295&rfr_iscdi=true |