Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring
Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to Chloroflexus spp. and Roseiflexus spp. have been well characterized in Mushroom Spring, where they occur with unicell...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2013-09, Vol.7 (9), p.1775-1789 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1789 |
---|---|
container_issue | 9 |
container_start_page | 1775 |
container_title | The ISME Journal |
container_volume | 7 |
creator | Klatt, Christian G Liu, Zhenfeng Ludwig, Marcus Kühl, Michael Jensen, Sheila I Bryant, Donald A Ward, David M |
description | Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to
Chloroflexus
spp. and
Roseiflexus
spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to
Synechococcus
spp. strains A and B′. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both
Roseiflexus
spp. and
Chloroflexus
spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night,
Chloroflexus
spp. and
Roseiflexus
spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle. |
doi_str_mv | 10.1038/ismej.2013.52 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3749495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439223000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-d1198d539a1a3caa60e7ea7b3ec3273677e6a06bd497f49d3870f1deb70aa2ae3</originalsourceid><addsrcrecordid>eNptkc1P3DAQxS3Uiq_2yLWK1Esv2fojtjcXJLSigITEhZ6tSTLZeJXEqe1F8N_jdGEFiJMtz2-e580j5IzRBaNi-duGATcLTplYSH5AjpmWLNdC0y_7u-JH5CSEDaVSK6UPyREXUkuhymMS73GYnIc-GzBC9DCG2tspusHW2QQxoh_tuM7smE2diy56N3WptOp6513b46NNtQ4qG2cMstTnXWVnQYhzG2RrdLFDP6S3MPmEfSNfW-gDfn85T8nfP5f3q-v89u7qZnVxm9dSipg3jJXLRooSGIgaQFHUCLoSWAuebGmNCqiqmqLUbVE2YqlpyxqsNAXggOKUnO90p201YFPjmAz2Js0wgH8yDqx5XxltZ9buwQhdlEUpk8CvFwHv_m0xRDPYUGPfw4huGwwrRMm5oJQm9OcHdOO2fkz2EsUVl2KpikTlOyotKQSP7X4YRs2cp_mfp5nzNJIn_sdbB3v6NcAELHbAbrPo33z7qeIzW7Kv9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426253864</pqid></control><display><type>article</type><title>Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Klatt, Christian G ; Liu, Zhenfeng ; Ludwig, Marcus ; Kühl, Michael ; Jensen, Sheila I ; Bryant, Donald A ; Ward, David M</creator><creatorcontrib>Klatt, Christian G ; Liu, Zhenfeng ; Ludwig, Marcus ; Kühl, Michael ; Jensen, Sheila I ; Bryant, Donald A ; Ward, David M</creatorcontrib><description>Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to
Chloroflexus
spp. and
Roseiflexus
spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to
Synechococcus
spp. strains A and B′. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both
Roseiflexus
spp. and
Chloroflexus
spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night,
Chloroflexus
spp. and
Roseiflexus
spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2013.52</identifier><identifier>PMID: 23575369</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/47 ; 631/326/2565 ; 631/326/41/2142 ; Bacteriochlorophylls - genetics ; Biomedical and Life Sciences ; Biosynthesis ; Carbon - metabolism ; Carbon dioxide fixation ; Chloroflexi - genetics ; Chloroflexi - metabolism ; Chloroflexus ; Cyanobacteria ; Ecology ; Environmental conditions ; Environmental Microbiology ; Esters ; Evolutionary Biology ; Fermentation ; Gene Expression Regulation, Bacterial ; Hot Springs - microbiology ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Natural environment ; Natural populations ; Original ; original-article ; Photoperiod ; Photosynthesis - genetics ; Polyhydroxyalkanoates ; Polymers ; Resource availability ; Synechococcus ; Transcriptome</subject><ispartof>The ISME Journal, 2013-09, Vol.7 (9), p.1775-1789</ispartof><rights>International Society for Microbial Ecology 2013</rights><rights>Copyright Nature Publishing Group Sep 2013</rights><rights>Copyright © 2013 International Society for Microbial Ecology 2013 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-d1198d539a1a3caa60e7ea7b3ec3273677e6a06bd497f49d3870f1deb70aa2ae3</citedby><cites>FETCH-LOGICAL-c553t-d1198d539a1a3caa60e7ea7b3ec3273677e6a06bd497f49d3870f1deb70aa2ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749495/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749495/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23575369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klatt, Christian G</creatorcontrib><creatorcontrib>Liu, Zhenfeng</creatorcontrib><creatorcontrib>Ludwig, Marcus</creatorcontrib><creatorcontrib>Kühl, Michael</creatorcontrib><creatorcontrib>Jensen, Sheila I</creatorcontrib><creatorcontrib>Bryant, Donald A</creatorcontrib><creatorcontrib>Ward, David M</creatorcontrib><title>Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to
Chloroflexus
spp. and
Roseiflexus
spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to
Synechococcus
spp. strains A and B′. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both
Roseiflexus
spp. and
Chloroflexus
spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night,
Chloroflexus
spp. and
Roseiflexus
spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle.</description><subject>631/158/47</subject><subject>631/326/2565</subject><subject>631/326/41/2142</subject><subject>Bacteriochlorophylls - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide fixation</subject><subject>Chloroflexi - genetics</subject><subject>Chloroflexi - metabolism</subject><subject>Chloroflexus</subject><subject>Cyanobacteria</subject><subject>Ecology</subject><subject>Environmental conditions</subject><subject>Environmental Microbiology</subject><subject>Esters</subject><subject>Evolutionary Biology</subject><subject>Fermentation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hot Springs - microbiology</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Natural environment</subject><subject>Natural populations</subject><subject>Original</subject><subject>original-article</subject><subject>Photoperiod</subject><subject>Photosynthesis - genetics</subject><subject>Polyhydroxyalkanoates</subject><subject>Polymers</subject><subject>Resource availability</subject><subject>Synechococcus</subject><subject>Transcriptome</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1P3DAQxS3Uiq_2yLWK1Esv2fojtjcXJLSigITEhZ6tSTLZeJXEqe1F8N_jdGEFiJMtz2-e580j5IzRBaNi-duGATcLTplYSH5AjpmWLNdC0y_7u-JH5CSEDaVSK6UPyREXUkuhymMS73GYnIc-GzBC9DCG2tspusHW2QQxoh_tuM7smE2diy56N3WptOp6513b46NNtQ4qG2cMstTnXWVnQYhzG2RrdLFDP6S3MPmEfSNfW-gDfn85T8nfP5f3q-v89u7qZnVxm9dSipg3jJXLRooSGIgaQFHUCLoSWAuebGmNCqiqmqLUbVE2YqlpyxqsNAXggOKUnO90p201YFPjmAz2Js0wgH8yDqx5XxltZ9buwQhdlEUpk8CvFwHv_m0xRDPYUGPfw4huGwwrRMm5oJQm9OcHdOO2fkz2EsUVl2KpikTlOyotKQSP7X4YRs2cp_mfp5nzNJIn_sdbB3v6NcAELHbAbrPo33z7qeIzW7Kv9g</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Klatt, Christian G</creator><creator>Liu, Zhenfeng</creator><creator>Ludwig, Marcus</creator><creator>Kühl, Michael</creator><creator>Jensen, Sheila I</creator><creator>Bryant, Donald A</creator><creator>Ward, David M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20130901</creationdate><title>Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring</title><author>Klatt, Christian G ; Liu, Zhenfeng ; Ludwig, Marcus ; Kühl, Michael ; Jensen, Sheila I ; Bryant, Donald A ; Ward, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-d1198d539a1a3caa60e7ea7b3ec3273677e6a06bd497f49d3870f1deb70aa2ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/158/47</topic><topic>631/326/2565</topic><topic>631/326/41/2142</topic><topic>Bacteriochlorophylls - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide fixation</topic><topic>Chloroflexi - genetics</topic><topic>Chloroflexi - metabolism</topic><topic>Chloroflexus</topic><topic>Cyanobacteria</topic><topic>Ecology</topic><topic>Environmental conditions</topic><topic>Environmental Microbiology</topic><topic>Esters</topic><topic>Evolutionary Biology</topic><topic>Fermentation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hot Springs - microbiology</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Natural environment</topic><topic>Natural populations</topic><topic>Original</topic><topic>original-article</topic><topic>Photoperiod</topic><topic>Photosynthesis - genetics</topic><topic>Polyhydroxyalkanoates</topic><topic>Polymers</topic><topic>Resource availability</topic><topic>Synechococcus</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klatt, Christian G</creatorcontrib><creatorcontrib>Liu, Zhenfeng</creatorcontrib><creatorcontrib>Ludwig, Marcus</creatorcontrib><creatorcontrib>Kühl, Michael</creatorcontrib><creatorcontrib>Jensen, Sheila I</creatorcontrib><creatorcontrib>Bryant, Donald A</creatorcontrib><creatorcontrib>Ward, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klatt, Christian G</au><au>Liu, Zhenfeng</au><au>Ludwig, Marcus</au><au>Kühl, Michael</au><au>Jensen, Sheila I</au><au>Bryant, Donald A</au><au>Ward, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>7</volume><issue>9</issue><spage>1775</spage><epage>1789</epage><pages>1775-1789</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to
Chloroflexus
spp. and
Roseiflexus
spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to
Synechococcus
spp. strains A and B′. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both
Roseiflexus
spp. and
Chloroflexus
spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night,
Chloroflexus
spp. and
Roseiflexus
spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23575369</pmid><doi>10.1038/ismej.2013.52</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2013-09, Vol.7 (9), p.1775-1789 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3749495 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/158/47 631/326/2565 631/326/41/2142 Bacteriochlorophylls - genetics Biomedical and Life Sciences Biosynthesis Carbon - metabolism Carbon dioxide fixation Chloroflexi - genetics Chloroflexi - metabolism Chloroflexus Cyanobacteria Ecology Environmental conditions Environmental Microbiology Esters Evolutionary Biology Fermentation Gene Expression Regulation, Bacterial Hot Springs - microbiology Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Natural environment Natural populations Original original-article Photoperiod Photosynthesis - genetics Polyhydroxyalkanoates Polymers Resource availability Synechococcus Transcriptome |
title | Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20metatranscriptomic%20patterning%20in%20phototrophic%20Chloroflexi%20inhabiting%20a%20microbial%20mat%20in%20a%20geothermal%20spring&rft.jtitle=The%20ISME%20Journal&rft.au=Klatt,%20Christian%20G&rft.date=2013-09-01&rft.volume=7&rft.issue=9&rft.spage=1775&rft.epage=1789&rft.pages=1775-1789&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2013.52&rft_dat=%3Cproquest_pubme%3E1439223000%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426253864&rft_id=info:pmid/23575369&rfr_iscdi=true |