An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways

Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, prof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pain (Amsterdam) 2013-09, Vol.154 (9), p.1749-1757
Hauptverfasser: Deuis, Jennifer R., Zimmermann, Katharina, Romanovsky, Andrej A., Possani, Lourival D., Cabot, Peter J., Lewis, Richard J., Vetter, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1757
container_issue 9
container_start_page 1749
container_title Pain (Amsterdam)
container_volume 154
creator Deuis, Jennifer R.
Zimmermann, Katharina
Romanovsky, Andrej A.
Possani, Lourival D.
Cabot, Peter J.
Lewis, Richard J.
Vetter, Irina
description Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops. Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.
doi_str_mv 10.1016/j.pain.2013.05.032
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3748219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304395913002716</els_id><sourcerecordid>23711479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</originalsourceid><addsrcrecordid>eNp9UU1vEzEUtBCIhsIf4IB84biLv3ctIaSqAlqpggucLcfrJQ6OvbI3SfPveauUAhcOtmW9mXnz3iD0mpKWEqrebdvJhtQyQnlLZEs4e4JWtO9YoxTjT9GKcCIarqW-QC9q3RJCGGP6ObpgvKNUdHqF6lXCNoWdjXiXBx9xHnG-tzFM0c4hNSENe-cH7HIcsI0xD6cULC7-4G2s2GJX9i4Au-To8ZgL_mIPtFU4JDz5EqaNL1BdjMI1b472VF-iZyOQ_auH9xJ9__Tx2_VNc_f18-311V3jpFaiYdRxp8eR-LVQQvZCgWWlpFV-TWFAOer1YIWTlIjR8k7Y3vdUMqG9Y8RKfok-nHWn_XrnB-fTDF7MVGDccjLZBvNvJYWN-ZEPBrR6RjUIsLOAK7nW4sdHLiVmicBszTKZWSIwRBqIAEhv_u76SPm9cwC8fQDY6mwci00u1D-4TnUCggKcOOOOOc6-1J9xf_TFbGDx88ZAmERxrZqlN9Hwa-BwAbT3Z5qH1R4CMKoLPkGIoXg3myGH_9n_BWsvte0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Deuis, Jennifer R. ; Zimmermann, Katharina ; Romanovsky, Andrej A. ; Possani, Lourival D. ; Cabot, Peter J. ; Lewis, Richard J. ; Vetter, Irina</creator><creatorcontrib>Deuis, Jennifer R. ; Zimmermann, Katharina ; Romanovsky, Andrej A. ; Possani, Lourival D. ; Cabot, Peter J. ; Lewis, Richard J. ; Vetter, Irina</creatorcontrib><description>Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops. Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.</description><identifier>ISSN: 0304-3959</identifier><identifier>EISSN: 1872-6623</identifier><identifier>DOI: 10.1016/j.pain.2013.05.032</identifier><identifier>PMID: 23711479</identifier><identifier>CODEN: PAINDB</identifier><language>eng</language><publisher>Philadelphia, PA: Elsevier B.V</publisher><subject>4-Aminopyridine - adverse effects ; Allodynia ; Analysis of Variance ; Animals ; Antineoplastic Agents - toxicity ; Biological and medical sciences ; Cold Temperature - adverse effects ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Hyperalgesia - chemically induced ; Male ; Membrane Potentials - drug effects ; Membrane Potentials - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; NAV1.3 Voltage-Gated Sodium Channel - genetics ; NAV1.3 Voltage-Gated Sodium Channel - metabolism ; NAV1.6 Voltage-Gated Sodium Channel - genetics ; NAV1.6 Voltage-Gated Sodium Channel - metabolism ; NAV1.9 Voltage-Gated Sodium Channel - genetics ; NAV1.9 Voltage-Gated Sodium Channel - metabolism ; Neuralgia - complications ; Neuralgia - genetics ; Organoplatinum Compounds - toxicity ; Oxaliplatin ; Potassium Channel Blockers - pharmacology ; Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors ; Transient Receptor Potential Channels - deficiency ; TRPA1 Cation Channel ; TRPM Cation Channels - deficiency ; Vertebrates: nervous system and sense organs ; Voltage-gated sodium channel</subject><ispartof>Pain (Amsterdam), 2013-09, Vol.154 (9), p.1749-1757</ispartof><rights>2013 International Association for the Study of Pain</rights><rights>Lippincott Williams &amp; Wilkins, Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.</rights><rights>2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</citedby><cites>FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27674022$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23711479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deuis, Jennifer R.</creatorcontrib><creatorcontrib>Zimmermann, Katharina</creatorcontrib><creatorcontrib>Romanovsky, Andrej A.</creatorcontrib><creatorcontrib>Possani, Lourival D.</creatorcontrib><creatorcontrib>Cabot, Peter J.</creatorcontrib><creatorcontrib>Lewis, Richard J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><title>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</title><title>Pain (Amsterdam)</title><addtitle>Pain</addtitle><description>Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops. Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.</description><subject>4-Aminopyridine - adverse effects</subject><subject>Allodynia</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Antineoplastic Agents - toxicity</subject><subject>Biological and medical sciences</subject><subject>Cold Temperature - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Hyperalgesia - chemically induced</subject><subject>Male</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>NAV1.3 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.3 Voltage-Gated Sodium Channel - metabolism</subject><subject>NAV1.6 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.6 Voltage-Gated Sodium Channel - metabolism</subject><subject>NAV1.9 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.9 Voltage-Gated Sodium Channel - metabolism</subject><subject>Neuralgia - complications</subject><subject>Neuralgia - genetics</subject><subject>Organoplatinum Compounds - toxicity</subject><subject>Oxaliplatin</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</subject><subject>Transient Receptor Potential Channels - deficiency</subject><subject>TRPA1 Cation Channel</subject><subject>TRPM Cation Channels - deficiency</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Voltage-gated sodium channel</subject><issn>0304-3959</issn><issn>1872-6623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vEzEUtBCIhsIf4IB84biLv3ctIaSqAlqpggucLcfrJQ6OvbI3SfPveauUAhcOtmW9mXnz3iD0mpKWEqrebdvJhtQyQnlLZEs4e4JWtO9YoxTjT9GKcCIarqW-QC9q3RJCGGP6ObpgvKNUdHqF6lXCNoWdjXiXBx9xHnG-tzFM0c4hNSENe-cH7HIcsI0xD6cULC7-4G2s2GJX9i4Au-To8ZgL_mIPtFU4JDz5EqaNL1BdjMI1b472VF-iZyOQ_auH9xJ9__Tx2_VNc_f18-311V3jpFaiYdRxp8eR-LVQQvZCgWWlpFV-TWFAOer1YIWTlIjR8k7Y3vdUMqG9Y8RKfok-nHWn_XrnB-fTDF7MVGDccjLZBvNvJYWN-ZEPBrR6RjUIsLOAK7nW4sdHLiVmicBszTKZWSIwRBqIAEhv_u76SPm9cwC8fQDY6mwci00u1D-4TnUCggKcOOOOOc6-1J9xf_TFbGDx88ZAmERxrZqlN9Hwa-BwAbT3Z5qH1R4CMKoLPkGIoXg3myGH_9n_BWsvte0</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Deuis, Jennifer R.</creator><creator>Zimmermann, Katharina</creator><creator>Romanovsky, Andrej A.</creator><creator>Possani, Lourival D.</creator><creator>Cabot, Peter J.</creator><creator>Lewis, Richard J.</creator><creator>Vetter, Irina</creator><general>Elsevier B.V</general><general>Lippincott Williams &amp; Wilkins, Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130901</creationdate><title>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</title><author>Deuis, Jennifer R. ; Zimmermann, Katharina ; Romanovsky, Andrej A. ; Possani, Lourival D. ; Cabot, Peter J. ; Lewis, Richard J. ; Vetter, Irina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>4-Aminopyridine - adverse effects</topic><topic>Allodynia</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Antineoplastic Agents - toxicity</topic><topic>Biological and medical sciences</topic><topic>Cold Temperature - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Hyperalgesia - chemically induced</topic><topic>Male</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>NAV1.3 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.3 Voltage-Gated Sodium Channel - metabolism</topic><topic>NAV1.6 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.6 Voltage-Gated Sodium Channel - metabolism</topic><topic>NAV1.9 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.9 Voltage-Gated Sodium Channel - metabolism</topic><topic>Neuralgia - complications</topic><topic>Neuralgia - genetics</topic><topic>Organoplatinum Compounds - toxicity</topic><topic>Oxaliplatin</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</topic><topic>Transient Receptor Potential Channels - deficiency</topic><topic>TRPA1 Cation Channel</topic><topic>TRPM Cation Channels - deficiency</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Voltage-gated sodium channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deuis, Jennifer R.</creatorcontrib><creatorcontrib>Zimmermann, Katharina</creatorcontrib><creatorcontrib>Romanovsky, Andrej A.</creatorcontrib><creatorcontrib>Possani, Lourival D.</creatorcontrib><creatorcontrib>Cabot, Peter J.</creatorcontrib><creatorcontrib>Lewis, Richard J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pain (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deuis, Jennifer R.</au><au>Zimmermann, Katharina</au><au>Romanovsky, Andrej A.</au><au>Possani, Lourival D.</au><au>Cabot, Peter J.</au><au>Lewis, Richard J.</au><au>Vetter, Irina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</atitle><jtitle>Pain (Amsterdam)</jtitle><addtitle>Pain</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>154</volume><issue>9</issue><spage>1749</spage><epage>1757</epage><pages>1749-1757</pages><issn>0304-3959</issn><eissn>1872-6623</eissn><coden>PAINDB</coden><abstract>Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops. Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.</abstract><cop>Philadelphia, PA</cop><pub>Elsevier B.V</pub><pmid>23711479</pmid><doi>10.1016/j.pain.2013.05.032</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3959
ispartof Pain (Amsterdam), 2013-09, Vol.154 (9), p.1749-1757
issn 0304-3959
1872-6623
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3748219
source MEDLINE; Journals@Ovid Complete
subjects 4-Aminopyridine - adverse effects
Allodynia
Analysis of Variance
Animals
Antineoplastic Agents - toxicity
Biological and medical sciences
Cold Temperature - adverse effects
Disease Models, Animal
Dose-Response Relationship, Drug
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Hyperalgesia - chemically induced
Male
Membrane Potentials - drug effects
Membrane Potentials - genetics
Mice
Mice, Inbred C57BL
Mice, Transgenic
NAV1.3 Voltage-Gated Sodium Channel - genetics
NAV1.3 Voltage-Gated Sodium Channel - metabolism
NAV1.6 Voltage-Gated Sodium Channel - genetics
NAV1.6 Voltage-Gated Sodium Channel - metabolism
NAV1.9 Voltage-Gated Sodium Channel - genetics
NAV1.9 Voltage-Gated Sodium Channel - metabolism
Neuralgia - complications
Neuralgia - genetics
Organoplatinum Compounds - toxicity
Oxaliplatin
Potassium Channel Blockers - pharmacology
Somesthesis and somesthetic pathways (proprioception, exteroception, nociception)
interoception
electrolocation. Sensory receptors
Transient Receptor Potential Channels - deficiency
TRPA1 Cation Channel
TRPM Cation Channels - deficiency
Vertebrates: nervous system and sense organs
Voltage-gated sodium channel
title An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20animal%20model%20of%20oxaliplatin-induced%20cold%20allodynia%20reveals%20a%20crucial%20role%20for%20Nav1.6%20in%20peripheral%20pain%20pathways&rft.jtitle=Pain%20(Amsterdam)&rft.au=Deuis,%20Jennifer%20R.&rft.date=2013-09-01&rft.volume=154&rft.issue=9&rft.spage=1749&rft.epage=1757&rft.pages=1749-1757&rft.issn=0304-3959&rft.eissn=1872-6623&rft.coden=PAINDB&rft_id=info:doi/10.1016/j.pain.2013.05.032&rft_dat=%3Cpubmed_cross%3E23711479%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23711479&rft_els_id=S0304395913002716&rfr_iscdi=true