An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways
Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, prof...
Gespeichert in:
Veröffentlicht in: | Pain (Amsterdam) 2013-09, Vol.154 (9), p.1749-1757 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1757 |
---|---|
container_issue | 9 |
container_start_page | 1749 |
container_title | Pain (Amsterdam) |
container_volume | 154 |
creator | Deuis, Jennifer R. Zimmermann, Katharina Romanovsky, Andrej A. Possani, Lourival D. Cabot, Peter J. Lewis, Richard J. Vetter, Irina |
description | Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops.
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia. |
doi_str_mv | 10.1016/j.pain.2013.05.032 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3748219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304395913002716</els_id><sourcerecordid>23711479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</originalsourceid><addsrcrecordid>eNp9UU1vEzEUtBCIhsIf4IB84biLv3ctIaSqAlqpggucLcfrJQ6OvbI3SfPveauUAhcOtmW9mXnz3iD0mpKWEqrebdvJhtQyQnlLZEs4e4JWtO9YoxTjT9GKcCIarqW-QC9q3RJCGGP6ObpgvKNUdHqF6lXCNoWdjXiXBx9xHnG-tzFM0c4hNSENe-cH7HIcsI0xD6cULC7-4G2s2GJX9i4Au-To8ZgL_mIPtFU4JDz5EqaNL1BdjMI1b472VF-iZyOQ_auH9xJ9__Tx2_VNc_f18-311V3jpFaiYdRxp8eR-LVQQvZCgWWlpFV-TWFAOer1YIWTlIjR8k7Y3vdUMqG9Y8RKfok-nHWn_XrnB-fTDF7MVGDccjLZBvNvJYWN-ZEPBrR6RjUIsLOAK7nW4sdHLiVmicBszTKZWSIwRBqIAEhv_u76SPm9cwC8fQDY6mwci00u1D-4TnUCggKcOOOOOc6-1J9xf_TFbGDx88ZAmERxrZqlN9Hwa-BwAbT3Z5qH1R4CMKoLPkGIoXg3myGH_9n_BWsvte0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Deuis, Jennifer R. ; Zimmermann, Katharina ; Romanovsky, Andrej A. ; Possani, Lourival D. ; Cabot, Peter J. ; Lewis, Richard J. ; Vetter, Irina</creator><creatorcontrib>Deuis, Jennifer R. ; Zimmermann, Katharina ; Romanovsky, Andrej A. ; Possani, Lourival D. ; Cabot, Peter J. ; Lewis, Richard J. ; Vetter, Irina</creatorcontrib><description>Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops.
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.</description><identifier>ISSN: 0304-3959</identifier><identifier>EISSN: 1872-6623</identifier><identifier>DOI: 10.1016/j.pain.2013.05.032</identifier><identifier>PMID: 23711479</identifier><identifier>CODEN: PAINDB</identifier><language>eng</language><publisher>Philadelphia, PA: Elsevier B.V</publisher><subject>4-Aminopyridine - adverse effects ; Allodynia ; Analysis of Variance ; Animals ; Antineoplastic Agents - toxicity ; Biological and medical sciences ; Cold Temperature - adverse effects ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Hyperalgesia - chemically induced ; Male ; Membrane Potentials - drug effects ; Membrane Potentials - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; NAV1.3 Voltage-Gated Sodium Channel - genetics ; NAV1.3 Voltage-Gated Sodium Channel - metabolism ; NAV1.6 Voltage-Gated Sodium Channel - genetics ; NAV1.6 Voltage-Gated Sodium Channel - metabolism ; NAV1.9 Voltage-Gated Sodium Channel - genetics ; NAV1.9 Voltage-Gated Sodium Channel - metabolism ; Neuralgia - complications ; Neuralgia - genetics ; Organoplatinum Compounds - toxicity ; Oxaliplatin ; Potassium Channel Blockers - pharmacology ; Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors ; Transient Receptor Potential Channels - deficiency ; TRPA1 Cation Channel ; TRPM Cation Channels - deficiency ; Vertebrates: nervous system and sense organs ; Voltage-gated sodium channel</subject><ispartof>Pain (Amsterdam), 2013-09, Vol.154 (9), p.1749-1757</ispartof><rights>2013 International Association for the Study of Pain</rights><rights>Lippincott Williams & Wilkins, Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.</rights><rights>2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</citedby><cites>FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27674022$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23711479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deuis, Jennifer R.</creatorcontrib><creatorcontrib>Zimmermann, Katharina</creatorcontrib><creatorcontrib>Romanovsky, Andrej A.</creatorcontrib><creatorcontrib>Possani, Lourival D.</creatorcontrib><creatorcontrib>Cabot, Peter J.</creatorcontrib><creatorcontrib>Lewis, Richard J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><title>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</title><title>Pain (Amsterdam)</title><addtitle>Pain</addtitle><description>Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops.
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.</description><subject>4-Aminopyridine - adverse effects</subject><subject>Allodynia</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Antineoplastic Agents - toxicity</subject><subject>Biological and medical sciences</subject><subject>Cold Temperature - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Hyperalgesia - chemically induced</subject><subject>Male</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>NAV1.3 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.3 Voltage-Gated Sodium Channel - metabolism</subject><subject>NAV1.6 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.6 Voltage-Gated Sodium Channel - metabolism</subject><subject>NAV1.9 Voltage-Gated Sodium Channel - genetics</subject><subject>NAV1.9 Voltage-Gated Sodium Channel - metabolism</subject><subject>Neuralgia - complications</subject><subject>Neuralgia - genetics</subject><subject>Organoplatinum Compounds - toxicity</subject><subject>Oxaliplatin</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</subject><subject>Transient Receptor Potential Channels - deficiency</subject><subject>TRPA1 Cation Channel</subject><subject>TRPM Cation Channels - deficiency</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Voltage-gated sodium channel</subject><issn>0304-3959</issn><issn>1872-6623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vEzEUtBCIhsIf4IB84biLv3ctIaSqAlqpggucLcfrJQ6OvbI3SfPveauUAhcOtmW9mXnz3iD0mpKWEqrebdvJhtQyQnlLZEs4e4JWtO9YoxTjT9GKcCIarqW-QC9q3RJCGGP6ObpgvKNUdHqF6lXCNoWdjXiXBx9xHnG-tzFM0c4hNSENe-cH7HIcsI0xD6cULC7-4G2s2GJX9i4Au-To8ZgL_mIPtFU4JDz5EqaNL1BdjMI1b472VF-iZyOQ_auH9xJ9__Tx2_VNc_f18-311V3jpFaiYdRxp8eR-LVQQvZCgWWlpFV-TWFAOer1YIWTlIjR8k7Y3vdUMqG9Y8RKfok-nHWn_XrnB-fTDF7MVGDccjLZBvNvJYWN-ZEPBrR6RjUIsLOAK7nW4sdHLiVmicBszTKZWSIwRBqIAEhv_u76SPm9cwC8fQDY6mwci00u1D-4TnUCggKcOOOOOc6-1J9xf_TFbGDx88ZAmERxrZqlN9Hwa-BwAbT3Z5qH1R4CMKoLPkGIoXg3myGH_9n_BWsvte0</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Deuis, Jennifer R.</creator><creator>Zimmermann, Katharina</creator><creator>Romanovsky, Andrej A.</creator><creator>Possani, Lourival D.</creator><creator>Cabot, Peter J.</creator><creator>Lewis, Richard J.</creator><creator>Vetter, Irina</creator><general>Elsevier B.V</general><general>Lippincott Williams & Wilkins, Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130901</creationdate><title>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</title><author>Deuis, Jennifer R. ; Zimmermann, Katharina ; Romanovsky, Andrej A. ; Possani, Lourival D. ; Cabot, Peter J. ; Lewis, Richard J. ; Vetter, Irina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5964-21c3c9ff0eb4645846147665a6eb16235f9bda4c5104fa374a8e815249ec20a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>4-Aminopyridine - adverse effects</topic><topic>Allodynia</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Antineoplastic Agents - toxicity</topic><topic>Biological and medical sciences</topic><topic>Cold Temperature - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Hyperalgesia - chemically induced</topic><topic>Male</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>NAV1.3 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.3 Voltage-Gated Sodium Channel - metabolism</topic><topic>NAV1.6 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.6 Voltage-Gated Sodium Channel - metabolism</topic><topic>NAV1.9 Voltage-Gated Sodium Channel - genetics</topic><topic>NAV1.9 Voltage-Gated Sodium Channel - metabolism</topic><topic>Neuralgia - complications</topic><topic>Neuralgia - genetics</topic><topic>Organoplatinum Compounds - toxicity</topic><topic>Oxaliplatin</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors</topic><topic>Transient Receptor Potential Channels - deficiency</topic><topic>TRPA1 Cation Channel</topic><topic>TRPM Cation Channels - deficiency</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Voltage-gated sodium channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deuis, Jennifer R.</creatorcontrib><creatorcontrib>Zimmermann, Katharina</creatorcontrib><creatorcontrib>Romanovsky, Andrej A.</creatorcontrib><creatorcontrib>Possani, Lourival D.</creatorcontrib><creatorcontrib>Cabot, Peter J.</creatorcontrib><creatorcontrib>Lewis, Richard J.</creatorcontrib><creatorcontrib>Vetter, Irina</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pain (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deuis, Jennifer R.</au><au>Zimmermann, Katharina</au><au>Romanovsky, Andrej A.</au><au>Possani, Lourival D.</au><au>Cabot, Peter J.</au><au>Lewis, Richard J.</au><au>Vetter, Irina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways</atitle><jtitle>Pain (Amsterdam)</jtitle><addtitle>Pain</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>154</volume><issue>9</issue><spage>1749</spage><epage>1757</epage><pages>1749-1757</pages><issn>0304-3959</issn><eissn>1872-6623</eissn><coden>PAINDB</coden><abstract>Cold allodynia elicited by local intraplantar injection of the chemotherapeutic agent oxaliplatin is mediated through Nav1.6-expressing peripheral sensory fibres. Activation of Nav1.6 alone elicits only mechanical allodynia and spontaneous pain, but when combined with inhibition of Kv channels, profound cold allodynia develops.
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K+-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.</abstract><cop>Philadelphia, PA</cop><pub>Elsevier B.V</pub><pmid>23711479</pmid><doi>10.1016/j.pain.2013.05.032</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3959 |
ispartof | Pain (Amsterdam), 2013-09, Vol.154 (9), p.1749-1757 |
issn | 0304-3959 1872-6623 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3748219 |
source | MEDLINE; Journals@Ovid Complete |
subjects | 4-Aminopyridine - adverse effects Allodynia Analysis of Variance Animals Antineoplastic Agents - toxicity Biological and medical sciences Cold Temperature - adverse effects Disease Models, Animal Dose-Response Relationship, Drug Fundamental and applied biological sciences. Psychology Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Hyperalgesia - chemically induced Male Membrane Potentials - drug effects Membrane Potentials - genetics Mice Mice, Inbred C57BL Mice, Transgenic NAV1.3 Voltage-Gated Sodium Channel - genetics NAV1.3 Voltage-Gated Sodium Channel - metabolism NAV1.6 Voltage-Gated Sodium Channel - genetics NAV1.6 Voltage-Gated Sodium Channel - metabolism NAV1.9 Voltage-Gated Sodium Channel - genetics NAV1.9 Voltage-Gated Sodium Channel - metabolism Neuralgia - complications Neuralgia - genetics Organoplatinum Compounds - toxicity Oxaliplatin Potassium Channel Blockers - pharmacology Somesthesis and somesthetic pathways (proprioception, exteroception, nociception) interoception electrolocation. Sensory receptors Transient Receptor Potential Channels - deficiency TRPA1 Cation Channel TRPM Cation Channels - deficiency Vertebrates: nervous system and sense organs Voltage-gated sodium channel |
title | An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20animal%20model%20of%20oxaliplatin-induced%20cold%20allodynia%20reveals%20a%20crucial%20role%20for%20Nav1.6%20in%20peripheral%20pain%20pathways&rft.jtitle=Pain%20(Amsterdam)&rft.au=Deuis,%20Jennifer%20R.&rft.date=2013-09-01&rft.volume=154&rft.issue=9&rft.spage=1749&rft.epage=1757&rft.pages=1749-1757&rft.issn=0304-3959&rft.eissn=1872-6623&rft.coden=PAINDB&rft_id=info:doi/10.1016/j.pain.2013.05.032&rft_dat=%3Cpubmed_cross%3E23711479%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23711479&rft_els_id=S0304395913002716&rfr_iscdi=true |