Parameter reconstruction of vibration systems from partial eigeninformation

Quadratic matrix polynomials are fundamental to vibration analysis. Because of the predetermined interconnectivity among the constituent elements and the mandatory nonnegativity of the physical parameters, most given vibration systems will impose some inherent structure on the coefficients of the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2009-11, Vol.327 (3), p.391-401
Hauptverfasser: Dong, Bo, Lin, Matthew M., Chu, Moody T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 3
container_start_page 391
container_title Journal of sound and vibration
container_volume 327
creator Dong, Bo
Lin, Matthew M.
Chu, Moody T.
description Quadratic matrix polynomials are fundamental to vibration analysis. Because of the predetermined interconnectivity among the constituent elements and the mandatory nonnegativity of the physical parameters, most given vibration systems will impose some inherent structure on the coefficients of the corresponding quadratic matrix polynomials. In the inverse problem of reconstructing a vibration system from its observed or desirable dynamical behavior, respecting the intrinsic structure becomes important and challenging both theoretically and practically. The issue of whether a structured inverse eigenvalue problem is solvable is problem dependent and has to be addressed structure by structure. In an earlier work, physical systems that can be modeled under the paradigm of a serially linked mass–spring system have been considered via specifically formulated inequality systems. In this paper, the framework is generalized to arbitrary generally linked systems. In particular, given any configuration of interconnectivity in a mass–spring system, this paper presents a mechanism that systematically and automatically generates a corresponding inequality system. A numerical approach is proposed to determine whether the inverse problem is solvable and, if it is so, computes the coefficient matrices while providing an estimate of the residual error. The most important feature of this approach is that it is problem independent, that is, the approach is general and robust for any kind of physical configuration. The ideas discussed in this paper have been implemented into a software package by which some numerical experiments are reported.
doi_str_mv 10.1016/j.jsv.2009.06.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3747012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X09005513</els_id><sourcerecordid>35027383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-a44717ca4845c7e7ea37bd338af92e2a16d8a800b1976bda317ab8a8df0a24373</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3BBuYC4JB3bie0ICQlVfKmV4AASN2viTIpXSbzY2ZX67-vtLqVcerLGfubVeB7GXnKoOHB1tq7WaVcJgLYCVYFQj9iKQ9uUplHmMVsBCFHWCn6dsGcprSGDtayfshMhW6V0Ayt28R0jTrRQLCK5MKclbt3iw1yEodj5LuJtka7TQlMqhhimYoNx8TgW5K9o9vMQ4nRLPWdPBhwTvTiep-znp48_zr-Ul98-fz3_cFm6houlxLrWXDusTd04TZpQ6q6X0uDQChLIVW_QAHS81arrUXKNXb7pB0BRSy1P2ftD7mbbTdQ7mpeIo91EP2G8tgG9_f9l9r_tVdhZqWsNXOSAN8eAGP5sKS128snROOJMYZusbEBoaWQG3z4IciNUo5U0-0x-QF0MKUUa7ubhYPe27NpmW3Zvy4Ky2VbueXX_I3cdf_Vk4PURwORwHCLOzqd_HG9No-U-6N2Bo7z2nadok_M0O-p9trrYPvgHxrgBFj-07Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826576382</pqid></control><display><type>article</type><title>Parameter reconstruction of vibration systems from partial eigeninformation</title><source>Elsevier ScienceDirect Journals</source><creator>Dong, Bo ; Lin, Matthew M. ; Chu, Moody T.</creator><creatorcontrib>Dong, Bo ; Lin, Matthew M. ; Chu, Moody T.</creatorcontrib><description>Quadratic matrix polynomials are fundamental to vibration analysis. Because of the predetermined interconnectivity among the constituent elements and the mandatory nonnegativity of the physical parameters, most given vibration systems will impose some inherent structure on the coefficients of the corresponding quadratic matrix polynomials. In the inverse problem of reconstructing a vibration system from its observed or desirable dynamical behavior, respecting the intrinsic structure becomes important and challenging both theoretically and practically. The issue of whether a structured inverse eigenvalue problem is solvable is problem dependent and has to be addressed structure by structure. In an earlier work, physical systems that can be modeled under the paradigm of a serially linked mass–spring system have been considered via specifically formulated inequality systems. In this paper, the framework is generalized to arbitrary generally linked systems. In particular, given any configuration of interconnectivity in a mass–spring system, this paper presents a mechanism that systematically and automatically generates a corresponding inequality system. A numerical approach is proposed to determine whether the inverse problem is solvable and, if it is so, computes the coefficient matrices while providing an estimate of the residual error. The most important feature of this approach is that it is problem independent, that is, the approach is general and robust for any kind of physical configuration. The ideas discussed in this paper have been implemented into a software package by which some numerical experiments are reported.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2009.06.026</identifier><identifier>PMID: 23966750</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2009-11, Vol.327 (3), p.391-401</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>2009 Elsevier Ltd. All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-a44717ca4845c7e7ea37bd338af92e2a16d8a800b1976bda317ab8a8df0a24373</citedby><cites>FETCH-LOGICAL-c512t-a44717ca4845c7e7ea37bd338af92e2a16d8a800b1976bda317ab8a8df0a24373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X09005513$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21985736$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23966750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Lin, Matthew M.</creatorcontrib><creatorcontrib>Chu, Moody T.</creatorcontrib><title>Parameter reconstruction of vibration systems from partial eigeninformation</title><title>Journal of sound and vibration</title><addtitle>J Sound Vib</addtitle><description>Quadratic matrix polynomials are fundamental to vibration analysis. Because of the predetermined interconnectivity among the constituent elements and the mandatory nonnegativity of the physical parameters, most given vibration systems will impose some inherent structure on the coefficients of the corresponding quadratic matrix polynomials. In the inverse problem of reconstructing a vibration system from its observed or desirable dynamical behavior, respecting the intrinsic structure becomes important and challenging both theoretically and practically. The issue of whether a structured inverse eigenvalue problem is solvable is problem dependent and has to be addressed structure by structure. In an earlier work, physical systems that can be modeled under the paradigm of a serially linked mass–spring system have been considered via specifically formulated inequality systems. In this paper, the framework is generalized to arbitrary generally linked systems. In particular, given any configuration of interconnectivity in a mass–spring system, this paper presents a mechanism that systematically and automatically generates a corresponding inequality system. A numerical approach is proposed to determine whether the inverse problem is solvable and, if it is so, computes the coefficient matrices while providing an estimate of the residual error. The most important feature of this approach is that it is problem independent, that is, the approach is general and robust for any kind of physical configuration. The ideas discussed in this paper have been implemented into a software package by which some numerical experiments are reported.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhB3BBuYC4JB3bie0ICQlVfKmV4AASN2viTIpXSbzY2ZX67-vtLqVcerLGfubVeB7GXnKoOHB1tq7WaVcJgLYCVYFQj9iKQ9uUplHmMVsBCFHWCn6dsGcprSGDtayfshMhW6V0Ayt28R0jTrRQLCK5MKclbt3iw1yEodj5LuJtka7TQlMqhhimYoNx8TgW5K9o9vMQ4nRLPWdPBhwTvTiep-znp48_zr-Ul98-fz3_cFm6houlxLrWXDusTd04TZpQ6q6X0uDQChLIVW_QAHS81arrUXKNXb7pB0BRSy1P2ftD7mbbTdQ7mpeIo91EP2G8tgG9_f9l9r_tVdhZqWsNXOSAN8eAGP5sKS128snROOJMYZusbEBoaWQG3z4IciNUo5U0-0x-QF0MKUUa7ubhYPe27NpmW3Zvy4Ky2VbueXX_I3cdf_Vk4PURwORwHCLOzqd_HG9No-U-6N2Bo7z2nadok_M0O-p9trrYPvgHxrgBFj-07Q</recordid><startdate>20091113</startdate><enddate>20091113</enddate><creator>Dong, Bo</creator><creator>Lin, Matthew M.</creator><creator>Chu, Moody T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20091113</creationdate><title>Parameter reconstruction of vibration systems from partial eigeninformation</title><author>Dong, Bo ; Lin, Matthew M. ; Chu, Moody T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-a44717ca4845c7e7ea37bd338af92e2a16d8a800b1976bda317ab8a8df0a24373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Lin, Matthew M.</creatorcontrib><creatorcontrib>Chu, Moody T.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bo</au><au>Lin, Matthew M.</au><au>Chu, Moody T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter reconstruction of vibration systems from partial eigeninformation</atitle><jtitle>Journal of sound and vibration</jtitle><addtitle>J Sound Vib</addtitle><date>2009-11-13</date><risdate>2009</risdate><volume>327</volume><issue>3</issue><spage>391</spage><epage>401</epage><pages>391-401</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>Quadratic matrix polynomials are fundamental to vibration analysis. Because of the predetermined interconnectivity among the constituent elements and the mandatory nonnegativity of the physical parameters, most given vibration systems will impose some inherent structure on the coefficients of the corresponding quadratic matrix polynomials. In the inverse problem of reconstructing a vibration system from its observed or desirable dynamical behavior, respecting the intrinsic structure becomes important and challenging both theoretically and practically. The issue of whether a structured inverse eigenvalue problem is solvable is problem dependent and has to be addressed structure by structure. In an earlier work, physical systems that can be modeled under the paradigm of a serially linked mass–spring system have been considered via specifically formulated inequality systems. In this paper, the framework is generalized to arbitrary generally linked systems. In particular, given any configuration of interconnectivity in a mass–spring system, this paper presents a mechanism that systematically and automatically generates a corresponding inequality system. A numerical approach is proposed to determine whether the inverse problem is solvable and, if it is so, computes the coefficient matrices while providing an estimate of the residual error. The most important feature of this approach is that it is problem independent, that is, the approach is general and robust for any kind of physical configuration. The ideas discussed in this paper have been implemented into a software package by which some numerical experiments are reported.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23966750</pmid><doi>10.1016/j.jsv.2009.06.026</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2009-11, Vol.327 (3), p.391-401
issn 0022-460X
1095-8568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3747012
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Parameter reconstruction of vibration systems from partial eigeninformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20reconstruction%20of%20vibration%20systems%20from%20partial%20eigeninformation&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Dong,%20Bo&rft.date=2009-11-13&rft.volume=327&rft.issue=3&rft.spage=391&rft.epage=401&rft.pages=391-401&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2009.06.026&rft_dat=%3Cproquest_pubme%3E35027383%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826576382&rft_id=info:pmid/23966750&rft_els_id=S0022460X09005513&rfr_iscdi=true