K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems

Using simultaneous measurements from multiple channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra-fast dynamic functional imaging of the human with whole-brain coverage and a good spatial resolution. Mathematically, the InI reconstruction is a general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2010-02, Vol.49 (4), p.3086-3098
Hauptverfasser: Lin, Fa-Hsuan, Witzel, Thomas, Chang, Wei-Tang, Wen-Kai Tsai, Kevin, Wang, Yen-Hsiang, Kuo, Wen-Jui, Belliveau, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3098
container_issue 4
container_start_page 3086
container_title NeuroImage (Orlando, Fla.)
container_volume 49
creator Lin, Fa-Hsuan
Witzel, Thomas
Chang, Wei-Tang
Wen-Kai Tsai, Kevin
Wang, Yen-Hsiang
Kuo, Wen-Jui
Belliveau, John W.
description Using simultaneous measurements from multiple channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra-fast dynamic functional imaging of the human with whole-brain coverage and a good spatial resolution. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space and k-space reconstructions. Because of the auto-calibration technique, the pMRI k-space reconstruction offers more robust and adaptive reconstructions compared to the image space algorithm. Here we present the k-space InI (K-InI) reconstructions to reconstruct the highly accelerated BOLD-contrast fMRI data of the human brain to achieve 100 ms temporal resolution. Simulations show that K-InI reconstructions can offer 3D image reconstructions at each time frame with reasonable spatial resolution, which cannot be obtained using the previously proposed image space minimum-norm estimates (MNE) or linear constraint minimum variance (LCMV) spatial filtering reconstructions. The InI reconstructions of in vivo BOLD-contrast fMRI data during a visuomotor task show that K-InI offer 3 to 5 fold more sensitive detection of the brain activation than MNE and a comparable detection sensitivity to the LCMV reconstructions. The group average of the high temporal resolution K-InI reconstructions of the hemodynamic response also shows a relative onset timing difference between the visual (first) and somatomotor (second) cortices by 400 ms (600 ms time-to-peak timing difference). This robust and sensitive K-InI reconstruction can be applied to dynamic MRI acquisitions using a large-n coil array to improve the spatiotemporal resolution.
doi_str_mv 10.1016/j.neuroimage.2009.11.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3745282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909012002</els_id><sourcerecordid>3245005181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-d8fd1513765511bf586a9434c351b01da8c6a9a8c06763ebd178b72b4e9a4d463</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EoqXwF1AkJD4OCZ44jp1LJaj4WLUSFzgbx5lsvdrYi52s1H_PrHZFgQNcPCO_z4zH8zJWAK-AQ_t2UwVcUvSTXWNVc95VABUJD9g58E6WnVT1w0MuRakBujP2JOcNJxAa_ZidQUeJ0OKcfb8u8846LBK6GPKcFjf7GIo4FtQ84OwdSTkGGwjyYY8pUyTNh3Xx-rpchdWbA327TDYUe5-XOMU5piLf5Rmn_JQ9Gu0247NTvGDfPn74evW5vPnyaXX17qZ0Uqi5HPQ4gAShWikB-lHq1naNaJyQ0HMYrHZ0QSdvVSuwH0DpXtV9g51thqYVF-zy2He39BMODsOc7NbsEs2a7ky03vypBH9r1nFvhGpkrWtq8OrUIMUfC-bZTD473G5twLhko0TD61p1msiX_yRrENAprgh88Re4iUsKtAYDkrdagWqBKH2kXIo5Jxx_DQ3cHOw2G3NvtznYbQAMCVT6_PdP3xee_CXg_RFAWv3eYzLZeSQrB0-Gz2aI_v-v_AQYr8H9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506871761</pqid></control><display><type>article</type><title>K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lin, Fa-Hsuan ; Witzel, Thomas ; Chang, Wei-Tang ; Wen-Kai Tsai, Kevin ; Wang, Yen-Hsiang ; Kuo, Wen-Jui ; Belliveau, John W.</creator><creatorcontrib>Lin, Fa-Hsuan ; Witzel, Thomas ; Chang, Wei-Tang ; Wen-Kai Tsai, Kevin ; Wang, Yen-Hsiang ; Kuo, Wen-Jui ; Belliveau, John W.</creatorcontrib><description>Using simultaneous measurements from multiple channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra-fast dynamic functional imaging of the human with whole-brain coverage and a good spatial resolution. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space and k-space reconstructions. Because of the auto-calibration technique, the pMRI k-space reconstruction offers more robust and adaptive reconstructions compared to the image space algorithm. Here we present the k-space InI (K-InI) reconstructions to reconstruct the highly accelerated BOLD-contrast fMRI data of the human brain to achieve 100 ms temporal resolution. Simulations show that K-InI reconstructions can offer 3D image reconstructions at each time frame with reasonable spatial resolution, which cannot be obtained using the previously proposed image space minimum-norm estimates (MNE) or linear constraint minimum variance (LCMV) spatial filtering reconstructions. The InI reconstructions of in vivo BOLD-contrast fMRI data during a visuomotor task show that K-InI offer 3 to 5 fold more sensitive detection of the brain activation than MNE and a comparable detection sensitivity to the LCMV reconstructions. The group average of the high temporal resolution K-InI reconstructions of the hemodynamic response also shows a relative onset timing difference between the visual (first) and somatomotor (second) cortices by 400 ms (600 ms time-to-peak timing difference). This robust and sensitive K-InI reconstruction can be applied to dynamic MRI acquisitions using a large-n coil array to improve the spatiotemporal resolution.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.11.016</identifier><identifier>PMID: 19914383</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Auto-calibration ; EEG ; Electroencephalography ; Estimates ; Event-related ; Evoked Potentials, Motor - physiology ; Evoked Potentials, Visual - physiology ; fMRI ; Humans ; Image Interpretation, Computer-Assisted - methods ; InI ; Inverse solution ; K-InI ; Latency ; Magnetic Resonance Imaging - methods ; Magnetoencephalography ; Medical research ; MEG ; Methods ; Movement - physiology ; MRI ; Neuroimaging ; Rapid imaging ; Timing ; Visual ; Visual Cortex - physiology ; Visual Perception - physiology ; Wavelet transforms</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-02, Vol.49 (4), p.3086-3098</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright 2009 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 15, 2010</rights><rights>2009 Elsevier Inc. All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-d8fd1513765511bf586a9434c351b01da8c6a9a8c06763ebd178b72b4e9a4d463</citedby><cites>FETCH-LOGICAL-c537t-d8fd1513765511bf586a9434c351b01da8c6a9a8c06763ebd178b72b4e9a4d463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811909012002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19914383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Fa-Hsuan</creatorcontrib><creatorcontrib>Witzel, Thomas</creatorcontrib><creatorcontrib>Chang, Wei-Tang</creatorcontrib><creatorcontrib>Wen-Kai Tsai, Kevin</creatorcontrib><creatorcontrib>Wang, Yen-Hsiang</creatorcontrib><creatorcontrib>Kuo, Wen-Jui</creatorcontrib><creatorcontrib>Belliveau, John W.</creatorcontrib><title>K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Using simultaneous measurements from multiple channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra-fast dynamic functional imaging of the human with whole-brain coverage and a good spatial resolution. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space and k-space reconstructions. Because of the auto-calibration technique, the pMRI k-space reconstruction offers more robust and adaptive reconstructions compared to the image space algorithm. Here we present the k-space InI (K-InI) reconstructions to reconstruct the highly accelerated BOLD-contrast fMRI data of the human brain to achieve 100 ms temporal resolution. Simulations show that K-InI reconstructions can offer 3D image reconstructions at each time frame with reasonable spatial resolution, which cannot be obtained using the previously proposed image space minimum-norm estimates (MNE) or linear constraint minimum variance (LCMV) spatial filtering reconstructions. The InI reconstructions of in vivo BOLD-contrast fMRI data during a visuomotor task show that K-InI offer 3 to 5 fold more sensitive detection of the brain activation than MNE and a comparable detection sensitivity to the LCMV reconstructions. The group average of the high temporal resolution K-InI reconstructions of the hemodynamic response also shows a relative onset timing difference between the visual (first) and somatomotor (second) cortices by 400 ms (600 ms time-to-peak timing difference). This robust and sensitive K-InI reconstruction can be applied to dynamic MRI acquisitions using a large-n coil array to improve the spatiotemporal resolution.</description><subject>Algorithms</subject><subject>Auto-calibration</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Estimates</subject><subject>Event-related</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>fMRI</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>InI</subject><subject>Inverse solution</subject><subject>K-InI</subject><subject>Latency</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetoencephalography</subject><subject>Medical research</subject><subject>MEG</subject><subject>Methods</subject><subject>Movement - physiology</subject><subject>MRI</subject><subject>Neuroimaging</subject><subject>Rapid imaging</subject><subject>Timing</subject><subject>Visual</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><subject>Wavelet transforms</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1v1DAQhi0EoqXwF1AkJD4OCZ44jp1LJaj4WLUSFzgbx5lsvdrYi52s1H_PrHZFgQNcPCO_z4zH8zJWAK-AQ_t2UwVcUvSTXWNVc95VABUJD9g58E6WnVT1w0MuRakBujP2JOcNJxAa_ZidQUeJ0OKcfb8u8846LBK6GPKcFjf7GIo4FtQ84OwdSTkGGwjyYY8pUyTNh3Xx-rpchdWbA327TDYUe5-XOMU5piLf5Rmn_JQ9Gu0247NTvGDfPn74evW5vPnyaXX17qZ0Uqi5HPQ4gAShWikB-lHq1naNaJyQ0HMYrHZ0QSdvVSuwH0DpXtV9g51thqYVF-zy2He39BMODsOc7NbsEs2a7ky03vypBH9r1nFvhGpkrWtq8OrUIMUfC-bZTD473G5twLhko0TD61p1msiX_yRrENAprgh88Re4iUsKtAYDkrdagWqBKH2kXIo5Jxx_DQ3cHOw2G3NvtznYbQAMCVT6_PdP3xee_CXg_RFAWv3eYzLZeSQrB0-Gz2aI_v-v_AQYr8H9</recordid><startdate>20100215</startdate><enddate>20100215</enddate><creator>Lin, Fa-Hsuan</creator><creator>Witzel, Thomas</creator><creator>Chang, Wei-Tang</creator><creator>Wen-Kai Tsai, Kevin</creator><creator>Wang, Yen-Hsiang</creator><creator>Kuo, Wen-Jui</creator><creator>Belliveau, John W.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100215</creationdate><title>K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems</title><author>Lin, Fa-Hsuan ; Witzel, Thomas ; Chang, Wei-Tang ; Wen-Kai Tsai, Kevin ; Wang, Yen-Hsiang ; Kuo, Wen-Jui ; Belliveau, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-d8fd1513765511bf586a9434c351b01da8c6a9a8c06763ebd178b72b4e9a4d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Auto-calibration</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Estimates</topic><topic>Event-related</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>fMRI</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>InI</topic><topic>Inverse solution</topic><topic>K-InI</topic><topic>Latency</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetoencephalography</topic><topic>Medical research</topic><topic>MEG</topic><topic>Methods</topic><topic>Movement - physiology</topic><topic>MRI</topic><topic>Neuroimaging</topic><topic>Rapid imaging</topic><topic>Timing</topic><topic>Visual</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Fa-Hsuan</creatorcontrib><creatorcontrib>Witzel, Thomas</creatorcontrib><creatorcontrib>Chang, Wei-Tang</creatorcontrib><creatorcontrib>Wen-Kai Tsai, Kevin</creatorcontrib><creatorcontrib>Wang, Yen-Hsiang</creatorcontrib><creatorcontrib>Kuo, Wen-Jui</creatorcontrib><creatorcontrib>Belliveau, John W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Fa-Hsuan</au><au>Witzel, Thomas</au><au>Chang, Wei-Tang</au><au>Wen-Kai Tsai, Kevin</au><au>Wang, Yen-Hsiang</au><au>Kuo, Wen-Jui</au><au>Belliveau, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-02-15</date><risdate>2010</risdate><volume>49</volume><issue>4</issue><spage>3086</spage><epage>3098</epage><pages>3086-3098</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Using simultaneous measurements from multiple channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra-fast dynamic functional imaging of the human with whole-brain coverage and a good spatial resolution. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space and k-space reconstructions. Because of the auto-calibration technique, the pMRI k-space reconstruction offers more robust and adaptive reconstructions compared to the image space algorithm. Here we present the k-space InI (K-InI) reconstructions to reconstruct the highly accelerated BOLD-contrast fMRI data of the human brain to achieve 100 ms temporal resolution. Simulations show that K-InI reconstructions can offer 3D image reconstructions at each time frame with reasonable spatial resolution, which cannot be obtained using the previously proposed image space minimum-norm estimates (MNE) or linear constraint minimum variance (LCMV) spatial filtering reconstructions. The InI reconstructions of in vivo BOLD-contrast fMRI data during a visuomotor task show that K-InI offer 3 to 5 fold more sensitive detection of the brain activation than MNE and a comparable detection sensitivity to the LCMV reconstructions. The group average of the high temporal resolution K-InI reconstructions of the hemodynamic response also shows a relative onset timing difference between the visual (first) and somatomotor (second) cortices by 400 ms (600 ms time-to-peak timing difference). This robust and sensitive K-InI reconstruction can be applied to dynamic MRI acquisitions using a large-n coil array to improve the spatiotemporal resolution.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19914383</pmid><doi>10.1016/j.neuroimage.2009.11.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2010-02, Vol.49 (4), p.3086-3098
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3745282
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Auto-calibration
EEG
Electroencephalography
Estimates
Event-related
Evoked Potentials, Motor - physiology
Evoked Potentials, Visual - physiology
fMRI
Humans
Image Interpretation, Computer-Assisted - methods
InI
Inverse solution
K-InI
Latency
Magnetic Resonance Imaging - methods
Magnetoencephalography
Medical research
MEG
Methods
Movement - physiology
MRI
Neuroimaging
Rapid imaging
Timing
Visual
Visual Cortex - physiology
Visual Perception - physiology
Wavelet transforms
title K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K-space%20reconstruction%20of%20magnetic%20resonance%20inverse%20imaging%20(K-InI)%20of%20human%20visuomotor%20systems&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Lin,%20Fa-Hsuan&rft.date=2010-02-15&rft.volume=49&rft.issue=4&rft.spage=3086&rft.epage=3098&rft.pages=3086-3098&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.11.016&rft_dat=%3Cproquest_pubme%3E3245005181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506871761&rft_id=info:pmid/19914383&rft_els_id=S1053811909012002&rfr_iscdi=true