Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis

Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibrob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2013-08, Vol.305 (3), p.C241-C252
Hauptverfasser: Lieber, Richard L, Ward, Samuel R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C252
container_issue 3
container_start_page C241
container_title American Journal of Physiology: Cell Physiology
container_volume 305
creator Lieber, Richard L
Ward, Samuel R
description Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.
doi_str_mv 10.1152/ajpcell.00173.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039538071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</originalsourceid><addsrcrecordid>eNpdUU2PFCEUJEbjzq7-AQ-mEy9eugUeH83FxEzUNdnEg3snNAMuYzeM0Jj472Vmx_XjRB5Vr1KvCqEXBA-EcPrG7A_WzfOAMZEwUEzgEdo0gPaEC3iMNhgE9IIwuECXpewxxowK9RRdUJCCCCo3aNk2hTqb3C3O3pkYylK65Ls1lFJd58OUUwll6NjQfVlztWvNZu5M3HW-RruGFNtoUyzue3XRutN2-eZmtzZgqcXOf2SeoSfezMU9P79X6PbD-9vtdX_z-eOn7bub3jIl1t7JSXngYzMsJhidVV6JkYD1sGs_nqudVGriRArJlB89WCr46LmXAhiHK_T2XvZQp8XtrItrM60POSwm_9TJBP0vEsOd_pp-aJCMjieB12eBnNpZZdVLKMesTXSpFk0YkRxYS7BRX_1H3aeaWygn1sjg6LGx6D3LthxKdv7BDMH6WKY-l6lPZepjmW3p5d9nPKz8bg9-AYtKnh8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418437674</pqid></control><display><type>article</type><title>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lieber, Richard L ; Ward, Samuel R</creator><creatorcontrib>Lieber, Richard L ; Ward, Samuel R</creatorcontrib><description>Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00173.2013</identifier><identifier>PMID: 23761627</identifier><identifier>CODEN: AJPCDD</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Cell Transdifferentiation ; Cells ; Collagen ; Collagen - metabolism ; Extracellular Matrix - metabolism ; Extracellular Matrix Proteins - metabolism ; Fibrosis ; Humans ; Mechanical properties ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Diseases - metabolism ; Muscular Diseases - pathology ; Musculoskeletal system ; Myofibroblasts - cytology ; Myofibroblasts - metabolism ; Myofibroblasts - pathology ; Myostatin - metabolism ; Phosphorylation ; Smad3 Protein - metabolism ; Themes ; Tissues ; Transforming Growth Factor beta - metabolism ; Wnt Signaling Pathway</subject><ispartof>American Journal of Physiology: Cell Physiology, 2013-08, Vol.305 (3), p.C241-C252</ispartof><rights>Copyright American Physiological Society Aug 1, 2013</rights><rights>Copyright © 2013 the American Physiological Society 2013 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</citedby><cites>FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3038,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23761627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Ward, Samuel R</creatorcontrib><title>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.</description><subject>Animals</subject><subject>Cell Transdifferentiation</subject><subject>Cells</subject><subject>Collagen</subject><subject>Collagen - metabolism</subject><subject>Extracellular Matrix - metabolism</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Fibrosis</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Diseases - metabolism</subject><subject>Muscular Diseases - pathology</subject><subject>Musculoskeletal system</subject><subject>Myofibroblasts - cytology</subject><subject>Myofibroblasts - metabolism</subject><subject>Myofibroblasts - pathology</subject><subject>Myostatin - metabolism</subject><subject>Phosphorylation</subject><subject>Smad3 Protein - metabolism</subject><subject>Themes</subject><subject>Tissues</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Wnt Signaling Pathway</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU2PFCEUJEbjzq7-AQ-mEy9eugUeH83FxEzUNdnEg3snNAMuYzeM0Jj472Vmx_XjRB5Vr1KvCqEXBA-EcPrG7A_WzfOAMZEwUEzgEdo0gPaEC3iMNhgE9IIwuECXpewxxowK9RRdUJCCCCo3aNk2hTqb3C3O3pkYylK65Ls1lFJd58OUUwll6NjQfVlztWvNZu5M3HW-RruGFNtoUyzue3XRutN2-eZmtzZgqcXOf2SeoSfezMU9P79X6PbD-9vtdX_z-eOn7bub3jIl1t7JSXngYzMsJhidVV6JkYD1sGs_nqudVGriRArJlB89WCr46LmXAhiHK_T2XvZQp8XtrItrM60POSwm_9TJBP0vEsOd_pp-aJCMjieB12eBnNpZZdVLKMesTXSpFk0YkRxYS7BRX_1H3aeaWygn1sjg6LGx6D3LthxKdv7BDMH6WKY-l6lPZepjmW3p5d9nPKz8bg9-AYtKnh8</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Lieber, Richard L</creator><creator>Ward, Samuel R</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</title><author>Lieber, Richard L ; Ward, Samuel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Transdifferentiation</topic><topic>Cells</topic><topic>Collagen</topic><topic>Collagen - metabolism</topic><topic>Extracellular Matrix - metabolism</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Fibrosis</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Diseases - metabolism</topic><topic>Muscular Diseases - pathology</topic><topic>Musculoskeletal system</topic><topic>Myofibroblasts - cytology</topic><topic>Myofibroblasts - metabolism</topic><topic>Myofibroblasts - pathology</topic><topic>Myostatin - metabolism</topic><topic>Phosphorylation</topic><topic>Smad3 Protein - metabolism</topic><topic>Themes</topic><topic>Tissues</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Ward, Samuel R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lieber, Richard L</au><au>Ward, Samuel R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>305</volume><issue>3</issue><spage>C241</spage><epage>C252</epage><pages>C241-C252</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><coden>AJPCDD</coden><abstract>Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>23761627</pmid><doi>10.1152/ajpcell.00173.2013</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6143
ispartof American Journal of Physiology: Cell Physiology, 2013-08, Vol.305 (3), p.C241-C252
issn 0363-6143
1522-1563
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742845
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Cell Transdifferentiation
Cells
Collagen
Collagen - metabolism
Extracellular Matrix - metabolism
Extracellular Matrix Proteins - metabolism
Fibrosis
Humans
Mechanical properties
Muscle, Skeletal - cytology
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Muscular Diseases - metabolism
Muscular Diseases - pathology
Musculoskeletal system
Myofibroblasts - cytology
Myofibroblasts - metabolism
Myofibroblasts - pathology
Myostatin - metabolism
Phosphorylation
Smad3 Protein - metabolism
Themes
Tissues
Transforming Growth Factor beta - metabolism
Wnt Signaling Pathway
title Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20mechanisms%20of%20tissue%20fibrosis.%204.%20Structural%20and%20functional%20consequences%20of%20skeletal%20muscle%20fibrosis&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Lieber,%20Richard%20L&rft.date=2013-08-01&rft.volume=305&rft.issue=3&rft.spage=C241&rft.epage=C252&rft.pages=C241-C252&rft.issn=0363-6143&rft.eissn=1522-1563&rft.coden=AJPCDD&rft_id=info:doi/10.1152/ajpcell.00173.2013&rft_dat=%3Cproquest_pubme%3E3039538071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418437674&rft_id=info:pmid/23761627&rfr_iscdi=true