Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis
Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibrob...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology: Cell Physiology 2013-08, Vol.305 (3), p.C241-C252 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C252 |
---|---|
container_issue | 3 |
container_start_page | C241 |
container_title | American Journal of Physiology: Cell Physiology |
container_volume | 305 |
creator | Lieber, Richard L Ward, Samuel R |
description | Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle. |
doi_str_mv | 10.1152/ajpcell.00173.2013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039538071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</originalsourceid><addsrcrecordid>eNpdUU2PFCEUJEbjzq7-AQ-mEy9eugUeH83FxEzUNdnEg3snNAMuYzeM0Jj472Vmx_XjRB5Vr1KvCqEXBA-EcPrG7A_WzfOAMZEwUEzgEdo0gPaEC3iMNhgE9IIwuECXpewxxowK9RRdUJCCCCo3aNk2hTqb3C3O3pkYylK65Ls1lFJd58OUUwll6NjQfVlztWvNZu5M3HW-RruGFNtoUyzue3XRutN2-eZmtzZgqcXOf2SeoSfezMU9P79X6PbD-9vtdX_z-eOn7bub3jIl1t7JSXngYzMsJhidVV6JkYD1sGs_nqudVGriRArJlB89WCr46LmXAhiHK_T2XvZQp8XtrItrM60POSwm_9TJBP0vEsOd_pp-aJCMjieB12eBnNpZZdVLKMesTXSpFk0YkRxYS7BRX_1H3aeaWygn1sjg6LGx6D3LthxKdv7BDMH6WKY-l6lPZepjmW3p5d9nPKz8bg9-AYtKnh8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418437674</pqid></control><display><type>article</type><title>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lieber, Richard L ; Ward, Samuel R</creator><creatorcontrib>Lieber, Richard L ; Ward, Samuel R</creatorcontrib><description>Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00173.2013</identifier><identifier>PMID: 23761627</identifier><identifier>CODEN: AJPCDD</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Cell Transdifferentiation ; Cells ; Collagen ; Collagen - metabolism ; Extracellular Matrix - metabolism ; Extracellular Matrix Proteins - metabolism ; Fibrosis ; Humans ; Mechanical properties ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - pathology ; Muscular Diseases - metabolism ; Muscular Diseases - pathology ; Musculoskeletal system ; Myofibroblasts - cytology ; Myofibroblasts - metabolism ; Myofibroblasts - pathology ; Myostatin - metabolism ; Phosphorylation ; Smad3 Protein - metabolism ; Themes ; Tissues ; Transforming Growth Factor beta - metabolism ; Wnt Signaling Pathway</subject><ispartof>American Journal of Physiology: Cell Physiology, 2013-08, Vol.305 (3), p.C241-C252</ispartof><rights>Copyright American Physiological Society Aug 1, 2013</rights><rights>Copyright © 2013 the American Physiological Society 2013 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</citedby><cites>FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3038,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23761627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Ward, Samuel R</creatorcontrib><title>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.</description><subject>Animals</subject><subject>Cell Transdifferentiation</subject><subject>Cells</subject><subject>Collagen</subject><subject>Collagen - metabolism</subject><subject>Extracellular Matrix - metabolism</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Fibrosis</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscular Diseases - metabolism</subject><subject>Muscular Diseases - pathology</subject><subject>Musculoskeletal system</subject><subject>Myofibroblasts - cytology</subject><subject>Myofibroblasts - metabolism</subject><subject>Myofibroblasts - pathology</subject><subject>Myostatin - metabolism</subject><subject>Phosphorylation</subject><subject>Smad3 Protein - metabolism</subject><subject>Themes</subject><subject>Tissues</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Wnt Signaling Pathway</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU2PFCEUJEbjzq7-AQ-mEy9eugUeH83FxEzUNdnEg3snNAMuYzeM0Jj472Vmx_XjRB5Vr1KvCqEXBA-EcPrG7A_WzfOAMZEwUEzgEdo0gPaEC3iMNhgE9IIwuECXpewxxowK9RRdUJCCCCo3aNk2hTqb3C3O3pkYylK65Ls1lFJd58OUUwll6NjQfVlztWvNZu5M3HW-RruGFNtoUyzue3XRutN2-eZmtzZgqcXOf2SeoSfezMU9P79X6PbD-9vtdX_z-eOn7bub3jIl1t7JSXngYzMsJhidVV6JkYD1sGs_nqudVGriRArJlB89WCr46LmXAhiHK_T2XvZQp8XtrItrM60POSwm_9TJBP0vEsOd_pp-aJCMjieB12eBnNpZZdVLKMesTXSpFk0YkRxYS7BRX_1H3aeaWygn1sjg6LGx6D3LthxKdv7BDMH6WKY-l6lPZepjmW3p5d9nPKz8bg9-AYtKnh8</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Lieber, Richard L</creator><creator>Ward, Samuel R</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</title><author>Lieber, Richard L ; Ward, Samuel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-e7b9f3580006b38ec9f96813cf3d06bf59d799b5176749f8f3c2658f5f763453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Transdifferentiation</topic><topic>Cells</topic><topic>Collagen</topic><topic>Collagen - metabolism</topic><topic>Extracellular Matrix - metabolism</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Fibrosis</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscular Diseases - metabolism</topic><topic>Muscular Diseases - pathology</topic><topic>Musculoskeletal system</topic><topic>Myofibroblasts - cytology</topic><topic>Myofibroblasts - metabolism</topic><topic>Myofibroblasts - pathology</topic><topic>Myostatin - metabolism</topic><topic>Phosphorylation</topic><topic>Smad3 Protein - metabolism</topic><topic>Themes</topic><topic>Tissues</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lieber, Richard L</creatorcontrib><creatorcontrib>Ward, Samuel R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lieber, Richard L</au><au>Ward, Samuel R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>305</volume><issue>3</issue><spage>C241</spage><epage>C252</epage><pages>C241-C252</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><coden>AJPCDD</coden><abstract>Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>23761627</pmid><doi>10.1152/ajpcell.00173.2013</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6143 |
ispartof | American Journal of Physiology: Cell Physiology, 2013-08, Vol.305 (3), p.C241-C252 |
issn | 0363-6143 1522-1563 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742845 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Cell Transdifferentiation Cells Collagen Collagen - metabolism Extracellular Matrix - metabolism Extracellular Matrix Proteins - metabolism Fibrosis Humans Mechanical properties Muscle, Skeletal - cytology Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Muscular Diseases - metabolism Muscular Diseases - pathology Musculoskeletal system Myofibroblasts - cytology Myofibroblasts - metabolism Myofibroblasts - pathology Myostatin - metabolism Phosphorylation Smad3 Protein - metabolism Themes Tissues Transforming Growth Factor beta - metabolism Wnt Signaling Pathway |
title | Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20mechanisms%20of%20tissue%20fibrosis.%204.%20Structural%20and%20functional%20consequences%20of%20skeletal%20muscle%20fibrosis&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Lieber,%20Richard%20L&rft.date=2013-08-01&rft.volume=305&rft.issue=3&rft.spage=C241&rft.epage=C252&rft.pages=C241-C252&rft.issn=0363-6143&rft.eissn=1522-1563&rft.coden=AJPCDD&rft_id=info:doi/10.1152/ajpcell.00173.2013&rft_dat=%3Cproquest_pubme%3E3039538071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418437674&rft_id=info:pmid/23761627&rfr_iscdi=true |