Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate

Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-04, Vol.117 (16), p.3414-3427
Hauptverfasser: Colaneri, Michael J, Vitali, Jacqueline, Kirschbaum, Kristin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3427
container_issue 16
container_start_page 3414
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 117
creator Colaneri, Michael J
Vitali, Jacqueline
Kirschbaum, Kristin
description Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively.
doi_str_mv 10.1021/jp401477m
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3740127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753483396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxhtR3HX14AtILsLuYTR_O-mLoLOrKyworp5DTZKeydCdtElamJuv4Cv6JEZ3nFUQPFWo-vFV5fua5jHBzwim5Pl24phwKcc7zTERFC8EJeJufWPVLUTLuqPmQc5bjDFhlN9vjigTDMtWHDflYnCmpBjQe0gwwjq44g364HIMEIxD19OveTZxqv3rMtsdij1axmlyCV3W4sMa-YDO4-QseuXz6fD967eNz8VbH6DEMwN29POIzv1mZxMU97C518OQ3aN9PWk-vb74uLxcXL1783b58moBvFVl0a-46YyilIteGeMcEOWIs4JYbrm0qjPSUliR1jLCFRGgKDcUG149sK1hJ82LG91pXo3OGhdKgkFPyY-QdjqC139Pgt_odfyimayGUlkFTvcCKX6eXS569Nm4YYDg4pw1kYJxxVjX_h9lvBWKkZZX9OwGNdXXnFx_uIhg_TNQfQi0sk_-_MKB_J1gBZ7uAcgGhj7V1Hy-5SQjknTklgOT9TbOKVTn_7HwBxapt4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346583164</pqid></control><display><type>article</type><title>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Colaneri, Michael J ; Vitali, Jacqueline ; Kirschbaum, Kristin</creator><creatorcontrib>Colaneri, Michael J ; Vitali, Jacqueline ; Kirschbaum, Kristin</creatorcontrib><description>Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp401477m</identifier><identifier>PMID: 23530765</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical, structural and metabolic biochemistry ; Atomic and molecular physics ; Binding Sites ; Biological and medical sciences ; Cadmium - chemistry ; Coordination Complexes - chemistry ; Copper ; Copper - chemistry ; Crystallization ; Dynamics ; Electron paramagnetic resonance ; Electron resonance and relaxation ; Electron Spin Resonance Spectroscopy ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Histidine - chemistry ; Hops ; Kinetics ; Mathematical analysis ; Metalloproteins - chemistry ; Miscellaneous ; Molecular Mimicry ; Molecular properties and interactions with photons ; Physics ; Proteins ; Spectra ; Spectroscopy ; Temperature ; Tensors ; Thermodynamics ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2013-04, Vol.117 (16), p.3414-3427</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</citedby><cites>FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp401477m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp401477m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27317191$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23530765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colaneri, Michael J</creatorcontrib><creatorcontrib>Vitali, Jacqueline</creatorcontrib><creatorcontrib>Kirschbaum, Kristin</creatorcontrib><title>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Atomic and molecular physics</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Cadmium - chemistry</subject><subject>Coordination Complexes - chemistry</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Crystallization</subject><subject>Dynamics</subject><subject>Electron paramagnetic resonance</subject><subject>Electron resonance and relaxation</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Histidine - chemistry</subject><subject>Hops</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Metalloproteins - chemistry</subject><subject>Miscellaneous</subject><subject>Molecular Mimicry</subject><subject>Molecular properties and interactions with photons</subject><subject>Physics</subject><subject>Proteins</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Temperature</subject><subject>Tensors</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-KFDEQxhtR3HX14AtILsLuYTR_O-mLoLOrKyworp5DTZKeydCdtElamJuv4Cv6JEZ3nFUQPFWo-vFV5fua5jHBzwim5Pl24phwKcc7zTERFC8EJeJufWPVLUTLuqPmQc5bjDFhlN9vjigTDMtWHDflYnCmpBjQe0gwwjq44g364HIMEIxD19OveTZxqv3rMtsdij1axmlyCV3W4sMa-YDO4-QseuXz6fD967eNz8VbH6DEMwN29POIzv1mZxMU97C518OQ3aN9PWk-vb74uLxcXL1783b58moBvFVl0a-46YyilIteGeMcEOWIs4JYbrm0qjPSUliR1jLCFRGgKDcUG149sK1hJ82LG91pXo3OGhdKgkFPyY-QdjqC139Pgt_odfyimayGUlkFTvcCKX6eXS569Nm4YYDg4pw1kYJxxVjX_h9lvBWKkZZX9OwGNdXXnFx_uIhg_TNQfQi0sk_-_MKB_J1gBZ7uAcgGhj7V1Hy-5SQjknTklgOT9TbOKVTn_7HwBxapt4k</recordid><startdate>20130425</startdate><enddate>20130425</enddate><creator>Colaneri, Michael J</creator><creator>Vitali, Jacqueline</creator><creator>Kirschbaum, Kristin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130425</creationdate><title>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</title><author>Colaneri, Michael J ; Vitali, Jacqueline ; Kirschbaum, Kristin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Atomic and molecular physics</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Cadmium - chemistry</topic><topic>Coordination Complexes - chemistry</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Crystallization</topic><topic>Dynamics</topic><topic>Electron paramagnetic resonance</topic><topic>Electron resonance and relaxation</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Histidine - chemistry</topic><topic>Hops</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Metalloproteins - chemistry</topic><topic>Miscellaneous</topic><topic>Molecular Mimicry</topic><topic>Molecular properties and interactions with photons</topic><topic>Physics</topic><topic>Proteins</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Temperature</topic><topic>Tensors</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colaneri, Michael J</creatorcontrib><creatorcontrib>Vitali, Jacqueline</creatorcontrib><creatorcontrib>Kirschbaum, Kristin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colaneri, Michael J</au><au>Vitali, Jacqueline</au><au>Kirschbaum, Kristin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-04-25</date><risdate>2013</risdate><volume>117</volume><issue>16</issue><spage>3414</spage><epage>3427</epage><pages>3414-3427</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23530765</pmid><doi>10.1021/jp401477m</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-04, Vol.117 (16), p.3414-3427
issn 1089-5639
1520-5215
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3740127
source MEDLINE; American Chemical Society Journals
subjects Analytical, structural and metabolic biochemistry
Atomic and molecular physics
Binding Sites
Biological and medical sciences
Cadmium - chemistry
Coordination Complexes - chemistry
Copper
Copper - chemistry
Crystallization
Dynamics
Electron paramagnetic resonance
Electron resonance and relaxation
Electron Spin Resonance Spectroscopy
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Histidine - chemistry
Hops
Kinetics
Mathematical analysis
Metalloproteins - chemistry
Miscellaneous
Molecular Mimicry
Molecular properties and interactions with photons
Physics
Proteins
Spectra
Spectroscopy
Temperature
Tensors
Thermodynamics
Water - chemistry
title Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Paramagnetic%20Resonance%20Spectroscopic%20Study%20of%20Copper%20Hopping%20in%20Doped%20Bis(l%E2%80%91histidinato)cadmium%20Dihydrate&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Colaneri,%20Michael%20J&rft.date=2013-04-25&rft.volume=117&rft.issue=16&rft.spage=3414&rft.epage=3427&rft.pages=3414-3427&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp401477m&rft_dat=%3Cproquest_pubme%3E1753483396%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346583164&rft_id=info:pmid/23530765&rfr_iscdi=true