Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate
Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-04, Vol.117 (16), p.3414-3427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3427 |
---|---|
container_issue | 16 |
container_start_page | 3414 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 117 |
creator | Colaneri, Michael J Vitali, Jacqueline Kirschbaum, Kristin |
description | Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively. |
doi_str_mv | 10.1021/jp401477m |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3740127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753483396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxhtR3HX14AtILsLuYTR_O-mLoLOrKyworp5DTZKeydCdtElamJuv4Cv6JEZ3nFUQPFWo-vFV5fua5jHBzwim5Pl24phwKcc7zTERFC8EJeJufWPVLUTLuqPmQc5bjDFhlN9vjigTDMtWHDflYnCmpBjQe0gwwjq44g364HIMEIxD19OveTZxqv3rMtsdij1axmlyCV3W4sMa-YDO4-QseuXz6fD967eNz8VbH6DEMwN29POIzv1mZxMU97C518OQ3aN9PWk-vb74uLxcXL1783b58moBvFVl0a-46YyilIteGeMcEOWIs4JYbrm0qjPSUliR1jLCFRGgKDcUG149sK1hJ82LG91pXo3OGhdKgkFPyY-QdjqC139Pgt_odfyimayGUlkFTvcCKX6eXS569Nm4YYDg4pw1kYJxxVjX_h9lvBWKkZZX9OwGNdXXnFx_uIhg_TNQfQi0sk_-_MKB_J1gBZ7uAcgGhj7V1Hy-5SQjknTklgOT9TbOKVTn_7HwBxapt4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346583164</pqid></control><display><type>article</type><title>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Colaneri, Michael J ; Vitali, Jacqueline ; Kirschbaum, Kristin</creator><creatorcontrib>Colaneri, Michael J ; Vitali, Jacqueline ; Kirschbaum, Kristin</creatorcontrib><description>Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp401477m</identifier><identifier>PMID: 23530765</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical, structural and metabolic biochemistry ; Atomic and molecular physics ; Binding Sites ; Biological and medical sciences ; Cadmium - chemistry ; Coordination Complexes - chemistry ; Copper ; Copper - chemistry ; Crystallization ; Dynamics ; Electron paramagnetic resonance ; Electron resonance and relaxation ; Electron Spin Resonance Spectroscopy ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Histidine - chemistry ; Hops ; Kinetics ; Mathematical analysis ; Metalloproteins - chemistry ; Miscellaneous ; Molecular Mimicry ; Molecular properties and interactions with photons ; Physics ; Proteins ; Spectra ; Spectroscopy ; Temperature ; Tensors ; Thermodynamics ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-04, Vol.117 (16), p.3414-3427</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</citedby><cites>FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp401477m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp401477m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27317191$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23530765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colaneri, Michael J</creatorcontrib><creatorcontrib>Vitali, Jacqueline</creatorcontrib><creatorcontrib>Kirschbaum, Kristin</creatorcontrib><title>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Atomic and molecular physics</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Cadmium - chemistry</subject><subject>Coordination Complexes - chemistry</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Crystallization</subject><subject>Dynamics</subject><subject>Electron paramagnetic resonance</subject><subject>Electron resonance and relaxation</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Histidine - chemistry</subject><subject>Hops</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Metalloproteins - chemistry</subject><subject>Miscellaneous</subject><subject>Molecular Mimicry</subject><subject>Molecular properties and interactions with photons</subject><subject>Physics</subject><subject>Proteins</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Temperature</subject><subject>Tensors</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-KFDEQxhtR3HX14AtILsLuYTR_O-mLoLOrKyworp5DTZKeydCdtElamJuv4Cv6JEZ3nFUQPFWo-vFV5fua5jHBzwim5Pl24phwKcc7zTERFC8EJeJufWPVLUTLuqPmQc5bjDFhlN9vjigTDMtWHDflYnCmpBjQe0gwwjq44g364HIMEIxD19OveTZxqv3rMtsdij1axmlyCV3W4sMa-YDO4-QseuXz6fD967eNz8VbH6DEMwN29POIzv1mZxMU97C518OQ3aN9PWk-vb74uLxcXL1783b58moBvFVl0a-46YyilIteGeMcEOWIs4JYbrm0qjPSUliR1jLCFRGgKDcUG149sK1hJ82LG91pXo3OGhdKgkFPyY-QdjqC139Pgt_odfyimayGUlkFTvcCKX6eXS569Nm4YYDg4pw1kYJxxVjX_h9lvBWKkZZX9OwGNdXXnFx_uIhg_TNQfQi0sk_-_MKB_J1gBZ7uAcgGhj7V1Hy-5SQjknTklgOT9TbOKVTn_7HwBxapt4k</recordid><startdate>20130425</startdate><enddate>20130425</enddate><creator>Colaneri, Michael J</creator><creator>Vitali, Jacqueline</creator><creator>Kirschbaum, Kristin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130425</creationdate><title>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</title><author>Colaneri, Michael J ; Vitali, Jacqueline ; Kirschbaum, Kristin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-fb4c9c82245f8cceea18e1ed51d4d47d89c7d2ab16d314815a824c20c4520d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Atomic and molecular physics</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Cadmium - chemistry</topic><topic>Coordination Complexes - chemistry</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Crystallization</topic><topic>Dynamics</topic><topic>Electron paramagnetic resonance</topic><topic>Electron resonance and relaxation</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Histidine - chemistry</topic><topic>Hops</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Metalloproteins - chemistry</topic><topic>Miscellaneous</topic><topic>Molecular Mimicry</topic><topic>Molecular properties and interactions with photons</topic><topic>Physics</topic><topic>Proteins</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Temperature</topic><topic>Tensors</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colaneri, Michael J</creatorcontrib><creatorcontrib>Vitali, Jacqueline</creatorcontrib><creatorcontrib>Kirschbaum, Kristin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colaneri, Michael J</au><au>Vitali, Jacqueline</au><au>Kirschbaum, Kristin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-04-25</date><risdate>2013</risdate><volume>117</volume><issue>16</issue><spage>3414</spage><epage>3427</epage><pages>3414-3427</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Electron paramagnetic resonance (EPR) spectroscopy was used to study Cu(II) dynamic behavior in a doped biological model crystal, bis(l-histidinato)cadmium dihydrate, in order to gain better insight into copper site stability in metalloproteins. Temperature-dependent changes in the low temperature X-band EPR spectra became visible around 100 K and continued up to room temperature. The measured 298 K g-tensor (principal values: 2.17, 2.16, 2.07) and copper hyperfine coupling tensor (principal values: −260, −190, −37 MHz) were similar to the average of the 77 K tensor values pertaining to two neighboring histidine binding sites. The observed temperature dependence was interpreted using Anderson’s theory of motional narrowing, where the magnetic parameters for the different states are averaged as the copper rapidly hops between sites. The EPR pattern was also found to undergo a sharp sigmoidal-shaped, temperature-dependent conversion between two species with a critical temperature T c ≈ 160 K. The species below T c hops between the two low temperature site patterns, and the one above T c represents an average of the molecular spin Hamiltonian coupling tensors of the two 77 K sites. In addition, the low and high temperature species hop between one another, contributing to the dynamic averaging. Spectral simulations using this 4-state model determined a hop rate between the two low temperature sites ν h4 = 4.5 × 108 s–1 and between the low and high temperature states ν h2 = 1.7 × 108 s–1 at 160 K. An Arrhenius relationship of hop rate and temperature gave energy barriers of ΔE 4 = 389 cm–1 and ΔE 2 = 656 cm–1 between the two low temperature sites and between the low and high temperature states, respectively.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23530765</pmid><doi>10.1021/jp401477m</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-04, Vol.117 (16), p.3414-3427 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3740127 |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical, structural and metabolic biochemistry Atomic and molecular physics Binding Sites Biological and medical sciences Cadmium - chemistry Coordination Complexes - chemistry Copper Copper - chemistry Crystallization Dynamics Electron paramagnetic resonance Electron resonance and relaxation Electron Spin Resonance Spectroscopy Exact sciences and technology Fundamental and applied biological sciences. Psychology Histidine - chemistry Hops Kinetics Mathematical analysis Metalloproteins - chemistry Miscellaneous Molecular Mimicry Molecular properties and interactions with photons Physics Proteins Spectra Spectroscopy Temperature Tensors Thermodynamics Water - chemistry |
title | Electron Paramagnetic Resonance Spectroscopic Study of Copper Hopping in Doped Bis(l‑histidinato)cadmium Dihydrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Paramagnetic%20Resonance%20Spectroscopic%20Study%20of%20Copper%20Hopping%20in%20Doped%20Bis(l%E2%80%91histidinato)cadmium%20Dihydrate&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Colaneri,%20Michael%20J&rft.date=2013-04-25&rft.volume=117&rft.issue=16&rft.spage=3414&rft.epage=3427&rft.pages=3414-3427&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp401477m&rft_dat=%3Cproquest_pubme%3E1753483396%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346583164&rft_id=info:pmid/23530765&rfr_iscdi=true |