Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling
Ataxin-2 (ATXN2) is implicated mainly in mRNA processing. Some ATXN2 associates with receptor tyrosine kinases (RTK), inhibiting their endocytic internalization through interaction of proline-rich domains (PRD) in ATXN2 with SH3 motifs in Src. Gain of function of ATXN2 leads to neuronal atrophy in t...
Gespeichert in:
Veröffentlicht in: | Journal of molecular neuroscience 2013-09, Vol.51 (1), p.68-81 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | Journal of molecular neuroscience |
container_volume | 51 |
creator | Drost, Jessica Nonis, David Eich, Florian Leske, Oliver Damrath, Ewa Brunt, Ewout R. Lastres-Becker, Isabel Heumann, Rolf Nowock, Joachim Auburger, Georg |
description | Ataxin-2 (ATXN2) is implicated mainly in mRNA processing. Some ATXN2 associates with receptor tyrosine kinases (RTK), inhibiting their endocytic internalization through interaction of proline-rich domains (PRD) in ATXN2 with SH3 motifs in Src. Gain of function of ATXN2 leads to neuronal atrophy in the diseases spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS). Conversely, ATXN2 knockout (KO) mice show hypertrophy and insulin resistance. To elucidate the influence of ATXN2 on trophic regulation, we surveyed interactions of ATXN2 with SH3 motifs from numerous proteins and observed a novel interaction with Grb2. Direct binding in glutathione S-transferase (GST) pull-down assays and coimmunoprecipitation of the endogenous proteins indicated a physiologically relevant association. In SCA2 patient fibroblasts, Grb2 more than Src protein levels were diminished, with an upregulation of both transcripts suggesting enhanced protein turnover. In KO mouse embryonal fibroblasts (MEF), the protein levels of Grb2 and Src were decreased. ATXN2 absence by itself was insufficient to significantly change Grb2-dependent signaling for endogenous Ras levels, Ras-GTP levels, and kinetics as well as MEK1 phosphorylation, suggesting that other factors compensate for proliferation control. In KO tissue with postmitotic neurons, a significant decrease of Src protein levels is prominent rather than Grb2. ATXN2 mutations modulate the levels of several components of the RTK endocytosis complex and may thus contribute to alter cell proliferation as well as translation and growth. |
doi_str_mv | 10.1007/s12031-012-9949-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3739869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1420166464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-d8bcb4a9165fa49300f31a333e26597bc8602e5138a77afe155f4f09a4e992383</originalsourceid><addsrcrecordid>eNqFkUtP3DAUha0KVIZpf0A3yFI33Rju9SvxphIa8ZIGKpV2bTkZZwjKxNROUPn3OBqKAKlidRf38_E95xDyBeEQAYqjhBwEMkDOjJGGyQ9khkoZhqj1DplBaRQrtdF7ZD-lWwCOEsuPZI8LIRQAzMjieHB_255xehlWY-cGn-hw4-nS3_su0dDQs1hx6voVvY41rcaBXoWB_nSJXrfr3nVtv_5EdhvXJf_5ac7J79OTX4tztvxxdrE4XrJagRjYqqzqSjqDWjVOGgHQCHT5Es-1MkVVlxq4VyhKVxSu8dlJIxswTnpjuCjFnHzf6t6N1cavat8P0XX2LrYbFx9scK19venbG7sO91YUwuQYssC3J4EY_ow-DXbTptp3net9GJNFKSQIVeb5Psohhyz1hH59g96GMeZoJgoNcG2yqTnBLVXHkFL0zfPdCHZq027btLlNO7VpJ-WDl4afX_yrLwN8C6S86tc-vvj6v6qP8NKnMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419026951</pqid></control><display><type>article</type><title>Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling</title><source>MEDLINE</source><source>Springer Journals</source><creator>Drost, Jessica ; Nonis, David ; Eich, Florian ; Leske, Oliver ; Damrath, Ewa ; Brunt, Ewout R. ; Lastres-Becker, Isabel ; Heumann, Rolf ; Nowock, Joachim ; Auburger, Georg</creator><creatorcontrib>Drost, Jessica ; Nonis, David ; Eich, Florian ; Leske, Oliver ; Damrath, Ewa ; Brunt, Ewout R. ; Lastres-Becker, Isabel ; Heumann, Rolf ; Nowock, Joachim ; Auburger, Georg</creatorcontrib><description>Ataxin-2 (ATXN2) is implicated mainly in mRNA processing. Some ATXN2 associates with receptor tyrosine kinases (RTK), inhibiting their endocytic internalization through interaction of proline-rich domains (PRD) in ATXN2 with SH3 motifs in Src. Gain of function of ATXN2 leads to neuronal atrophy in the diseases spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS). Conversely, ATXN2 knockout (KO) mice show hypertrophy and insulin resistance. To elucidate the influence of ATXN2 on trophic regulation, we surveyed interactions of ATXN2 with SH3 motifs from numerous proteins and observed a novel interaction with Grb2. Direct binding in glutathione S-transferase (GST) pull-down assays and coimmunoprecipitation of the endogenous proteins indicated a physiologically relevant association. In SCA2 patient fibroblasts, Grb2 more than Src protein levels were diminished, with an upregulation of both transcripts suggesting enhanced protein turnover. In KO mouse embryonal fibroblasts (MEF), the protein levels of Grb2 and Src were decreased. ATXN2 absence by itself was insufficient to significantly change Grb2-dependent signaling for endogenous Ras levels, Ras-GTP levels, and kinetics as well as MEK1 phosphorylation, suggesting that other factors compensate for proliferation control. In KO tissue with postmitotic neurons, a significant decrease of Src protein levels is prominent rather than Grb2. ATXN2 mutations modulate the levels of several components of the RTK endocytosis complex and may thus contribute to alter cell proliferation as well as translation and growth.</description><identifier>ISSN: 0895-8696</identifier><identifier>EISSN: 1559-1166</identifier><identifier>DOI: 10.1007/s12031-012-9949-4</identifier><identifier>PMID: 23335000</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Amino Acid Motifs ; Amyotrophic lateral sclerosis ; Animals ; Ataxia ; Ataxins ; Atrophy ; Binding Sites ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell growth ; Cell Proliferation ; Endocytosis ; Epidermal growth factor ; Fibroblasts - metabolism ; GRB2 Adaptor Protein - genetics ; GRB2 Adaptor Protein - metabolism ; HEK293 Cells ; Humans ; Insulin resistance ; Kinases ; MAP Kinase Kinase 1 - metabolism ; Mice ; Motor neurone disease ; Mutation ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurochemistry ; Neurology ; Neurons - metabolism ; Neurosciences ; Phosphorylation ; Protein Binding ; Proteins ; Proteomics ; ras Proteins - metabolism ; Signal Transduction ; src-Family Kinases - metabolism ; Toxicity</subject><ispartof>Journal of molecular neuroscience, 2013-09, Vol.51 (1), p.68-81</ispartof><rights>The Author(s) 2013</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-d8bcb4a9165fa49300f31a333e26597bc8602e5138a77afe155f4f09a4e992383</citedby><cites>FETCH-LOGICAL-c503t-d8bcb4a9165fa49300f31a333e26597bc8602e5138a77afe155f4f09a4e992383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12031-012-9949-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12031-012-9949-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23335000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drost, Jessica</creatorcontrib><creatorcontrib>Nonis, David</creatorcontrib><creatorcontrib>Eich, Florian</creatorcontrib><creatorcontrib>Leske, Oliver</creatorcontrib><creatorcontrib>Damrath, Ewa</creatorcontrib><creatorcontrib>Brunt, Ewout R.</creatorcontrib><creatorcontrib>Lastres-Becker, Isabel</creatorcontrib><creatorcontrib>Heumann, Rolf</creatorcontrib><creatorcontrib>Nowock, Joachim</creatorcontrib><creatorcontrib>Auburger, Georg</creatorcontrib><title>Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling</title><title>Journal of molecular neuroscience</title><addtitle>J Mol Neurosci</addtitle><addtitle>J Mol Neurosci</addtitle><description>Ataxin-2 (ATXN2) is implicated mainly in mRNA processing. Some ATXN2 associates with receptor tyrosine kinases (RTK), inhibiting their endocytic internalization through interaction of proline-rich domains (PRD) in ATXN2 with SH3 motifs in Src. Gain of function of ATXN2 leads to neuronal atrophy in the diseases spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS). Conversely, ATXN2 knockout (KO) mice show hypertrophy and insulin resistance. To elucidate the influence of ATXN2 on trophic regulation, we surveyed interactions of ATXN2 with SH3 motifs from numerous proteins and observed a novel interaction with Grb2. Direct binding in glutathione S-transferase (GST) pull-down assays and coimmunoprecipitation of the endogenous proteins indicated a physiologically relevant association. In SCA2 patient fibroblasts, Grb2 more than Src protein levels were diminished, with an upregulation of both transcripts suggesting enhanced protein turnover. In KO mouse embryonal fibroblasts (MEF), the protein levels of Grb2 and Src were decreased. ATXN2 absence by itself was insufficient to significantly change Grb2-dependent signaling for endogenous Ras levels, Ras-GTP levels, and kinetics as well as MEK1 phosphorylation, suggesting that other factors compensate for proliferation control. In KO tissue with postmitotic neurons, a significant decrease of Src protein levels is prominent rather than Grb2. ATXN2 mutations modulate the levels of several components of the RTK endocytosis complex and may thus contribute to alter cell proliferation as well as translation and growth.</description><subject>Amino Acid Motifs</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Animals</subject><subject>Ataxia</subject><subject>Ataxins</subject><subject>Atrophy</subject><subject>Binding Sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>Endocytosis</subject><subject>Epidermal growth factor</subject><subject>Fibroblasts - metabolism</subject><subject>GRB2 Adaptor Protein - genetics</subject><subject>GRB2 Adaptor Protein - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>MAP Kinase Kinase 1 - metabolism</subject><subject>Mice</subject><subject>Motor neurone disease</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>ras Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>src-Family Kinases - metabolism</subject><subject>Toxicity</subject><issn>0895-8696</issn><issn>1559-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtP3DAUha0KVIZpf0A3yFI33Rju9SvxphIa8ZIGKpV2bTkZZwjKxNROUPn3OBqKAKlidRf38_E95xDyBeEQAYqjhBwEMkDOjJGGyQ9khkoZhqj1DplBaRQrtdF7ZD-lWwCOEsuPZI8LIRQAzMjieHB_255xehlWY-cGn-hw4-nS3_su0dDQs1hx6voVvY41rcaBXoWB_nSJXrfr3nVtv_5EdhvXJf_5ac7J79OTX4tztvxxdrE4XrJagRjYqqzqSjqDWjVOGgHQCHT5Es-1MkVVlxq4VyhKVxSu8dlJIxswTnpjuCjFnHzf6t6N1cavat8P0XX2LrYbFx9scK19venbG7sO91YUwuQYssC3J4EY_ow-DXbTptp3net9GJNFKSQIVeb5Psohhyz1hH59g96GMeZoJgoNcG2yqTnBLVXHkFL0zfPdCHZq027btLlNO7VpJ-WDl4afX_yrLwN8C6S86tc-vvj6v6qP8NKnMA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Drost, Jessica</creator><creator>Nonis, David</creator><creator>Eich, Florian</creator><creator>Leske, Oliver</creator><creator>Damrath, Ewa</creator><creator>Brunt, Ewout R.</creator><creator>Lastres-Becker, Isabel</creator><creator>Heumann, Rolf</creator><creator>Nowock, Joachim</creator><creator>Auburger, Georg</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130901</creationdate><title>Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling</title><author>Drost, Jessica ; Nonis, David ; Eich, Florian ; Leske, Oliver ; Damrath, Ewa ; Brunt, Ewout R. ; Lastres-Becker, Isabel ; Heumann, Rolf ; Nowock, Joachim ; Auburger, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-d8bcb4a9165fa49300f31a333e26597bc8602e5138a77afe155f4f09a4e992383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Motifs</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Animals</topic><topic>Ataxia</topic><topic>Ataxins</topic><topic>Atrophy</topic><topic>Binding Sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>Endocytosis</topic><topic>Epidermal growth factor</topic><topic>Fibroblasts - metabolism</topic><topic>GRB2 Adaptor Protein - genetics</topic><topic>GRB2 Adaptor Protein - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>MAP Kinase Kinase 1 - metabolism</topic><topic>Mice</topic><topic>Motor neurone disease</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>ras Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>src-Family Kinases - metabolism</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drost, Jessica</creatorcontrib><creatorcontrib>Nonis, David</creatorcontrib><creatorcontrib>Eich, Florian</creatorcontrib><creatorcontrib>Leske, Oliver</creatorcontrib><creatorcontrib>Damrath, Ewa</creatorcontrib><creatorcontrib>Brunt, Ewout R.</creatorcontrib><creatorcontrib>Lastres-Becker, Isabel</creatorcontrib><creatorcontrib>Heumann, Rolf</creatorcontrib><creatorcontrib>Nowock, Joachim</creatorcontrib><creatorcontrib>Auburger, Georg</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drost, Jessica</au><au>Nonis, David</au><au>Eich, Florian</au><au>Leske, Oliver</au><au>Damrath, Ewa</au><au>Brunt, Ewout R.</au><au>Lastres-Becker, Isabel</au><au>Heumann, Rolf</au><au>Nowock, Joachim</au><au>Auburger, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling</atitle><jtitle>Journal of molecular neuroscience</jtitle><stitle>J Mol Neurosci</stitle><addtitle>J Mol Neurosci</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>51</volume><issue>1</issue><spage>68</spage><epage>81</epage><pages>68-81</pages><issn>0895-8696</issn><eissn>1559-1166</eissn><abstract>Ataxin-2 (ATXN2) is implicated mainly in mRNA processing. Some ATXN2 associates with receptor tyrosine kinases (RTK), inhibiting their endocytic internalization through interaction of proline-rich domains (PRD) in ATXN2 with SH3 motifs in Src. Gain of function of ATXN2 leads to neuronal atrophy in the diseases spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS). Conversely, ATXN2 knockout (KO) mice show hypertrophy and insulin resistance. To elucidate the influence of ATXN2 on trophic regulation, we surveyed interactions of ATXN2 with SH3 motifs from numerous proteins and observed a novel interaction with Grb2. Direct binding in glutathione S-transferase (GST) pull-down assays and coimmunoprecipitation of the endogenous proteins indicated a physiologically relevant association. In SCA2 patient fibroblasts, Grb2 more than Src protein levels were diminished, with an upregulation of both transcripts suggesting enhanced protein turnover. In KO mouse embryonal fibroblasts (MEF), the protein levels of Grb2 and Src were decreased. ATXN2 absence by itself was insufficient to significantly change Grb2-dependent signaling for endogenous Ras levels, Ras-GTP levels, and kinetics as well as MEK1 phosphorylation, suggesting that other factors compensate for proliferation control. In KO tissue with postmitotic neurons, a significant decrease of Src protein levels is prominent rather than Grb2. ATXN2 mutations modulate the levels of several components of the RTK endocytosis complex and may thus contribute to alter cell proliferation as well as translation and growth.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23335000</pmid><doi>10.1007/s12031-012-9949-4</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-8696 |
ispartof | Journal of molecular neuroscience, 2013-09, Vol.51 (1), p.68-81 |
issn | 0895-8696 1559-1166 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3739869 |
source | MEDLINE; Springer Journals |
subjects | Amino Acid Motifs Amyotrophic lateral sclerosis Animals Ataxia Ataxins Atrophy Binding Sites Biomedical and Life Sciences Biomedicine Cell Biology Cell growth Cell Proliferation Endocytosis Epidermal growth factor Fibroblasts - metabolism GRB2 Adaptor Protein - genetics GRB2 Adaptor Protein - metabolism HEK293 Cells Humans Insulin resistance Kinases MAP Kinase Kinase 1 - metabolism Mice Motor neurone disease Mutation Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurochemistry Neurology Neurons - metabolism Neurosciences Phosphorylation Protein Binding Proteins Proteomics ras Proteins - metabolism Signal Transduction src-Family Kinases - metabolism Toxicity |
title | Ataxin-2 Modulates the Levels of Grb2 and Src but Not Ras Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ataxin-2%20Modulates%20the%20Levels%20of%20Grb2%20and%20Src%20but%20Not%20Ras%20Signaling&rft.jtitle=Journal%20of%20molecular%20neuroscience&rft.au=Drost,%20Jessica&rft.date=2013-09-01&rft.volume=51&rft.issue=1&rft.spage=68&rft.epage=81&rft.pages=68-81&rft.issn=0895-8696&rft.eissn=1559-1166&rft_id=info:doi/10.1007/s12031-012-9949-4&rft_dat=%3Cproquest_pubme%3E1420166464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419026951&rft_id=info:pmid/23335000&rfr_iscdi=true |