RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference

Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discrimin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2013-08, Vol.93 (2), p.278-288
Hauptverfasser: Maples, Brian K., Gravel, Simon, Kenny, Eimear E., Bustamante, Carlos D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 2
container_start_page 278
container_title American journal of human genetics
container_volume 93
creator Maples, Brian K.
Gravel, Simon
Kenny, Eimear E.
Bustamante, Carlos D.
description Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%).
doi_str_mv 10.1016/j.ajhg.2013.06.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3738819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929713002899</els_id><sourcerecordid>1444859199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModlv9Aj5IwBdfZrz5M5NERFiq1cIWYVF8DNlMZjfD7GSbzCz22zfD1qI--BQu-d3DPecg9IpASYDU77rSdLttSYGwEuoSKDxBC1IxUdQ1VE_RAgBooagSZ-g8pQ6AEAnsOTqjTBHgNV-gn-urG__rPV7iTz7Z6Pd-MKM_OnwTGtf7YYuXh0MMxu5wGyJem4NvsBkavA6bKY14Fazpi-VgXRrjHb4eWhddnl6gZ63pk3v58F6gH1efv19-LVbfvlxfLleFrZQcC95SyYWT1BrpagpSOeWEaipSt9KwljNHGmBCWkHFhjOxUU4qKXmlVMUA2AX6eNI9TJu9a6wbxmh6fchOTLzTwXj998_gd3objpoJJiVRWeDtg0AMt1N2ofc5CNf3ZnBhSppwzmWliJrRN_-gXZjikO1lihIlqRQsU_RE2RhSiq59PIaAnnvTnZ5703NvGmqde8tLr_-08bjyu6gMfDgBLod59C7qZP0cdOOjs6Nugv-f_j0d8afl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1421982873</pqid></control><display><type>article</type><title>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Maples, Brian K. ; Gravel, Simon ; Kenny, Eimear E. ; Bustamante, Carlos D.</creator><creatorcontrib>Maples, Brian K. ; Gravel, Simon ; Kenny, Eimear E. ; Bustamante, Carlos D.</creatorcontrib><description>Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%).</description><identifier>ISSN: 0002-9297</identifier><identifier>ISSN: 1537-6605</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2013.06.020</identifier><identifier>PMID: 23910464</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Asian People - genetics ; Black or African American ; Black People - genetics ; Computer Simulation ; Discriminant analysis ; Ethnicity ; Genealogy ; Genetic Testing ; Genome, Human ; Genomes ; Haplotypes ; Humans ; Indians, North American - genetics ; Mathematical models ; Models, Genetic ; Polymorphism, Single Nucleotide ; Simulation ; White People - genetics</subject><ispartof>American journal of human genetics, 2013-08, Vol.93 (2), p.278-288</ispartof><rights>2013 The American Society of Human Genetics</rights><rights>Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press Aug 8, 2013</rights><rights>2013 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved. 2013 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</citedby><cites>FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738819/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929713002899$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23910464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maples, Brian K.</creatorcontrib><creatorcontrib>Gravel, Simon</creatorcontrib><creatorcontrib>Kenny, Eimear E.</creatorcontrib><creatorcontrib>Bustamante, Carlos D.</creatorcontrib><title>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%).</description><subject>Asian People - genetics</subject><subject>Black or African American</subject><subject>Black People - genetics</subject><subject>Computer Simulation</subject><subject>Discriminant analysis</subject><subject>Ethnicity</subject><subject>Genealogy</subject><subject>Genetic Testing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Indians, North American - genetics</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Simulation</subject><subject>White People - genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV9rFDEUxYModlv9Aj5IwBdfZrz5M5NERFiq1cIWYVF8DNlMZjfD7GSbzCz22zfD1qI--BQu-d3DPecg9IpASYDU77rSdLttSYGwEuoSKDxBC1IxUdQ1VE_RAgBooagSZ-g8pQ6AEAnsOTqjTBHgNV-gn-urG__rPV7iTz7Z6Pd-MKM_OnwTGtf7YYuXh0MMxu5wGyJem4NvsBkavA6bKY14Fazpi-VgXRrjHb4eWhddnl6gZ63pk3v58F6gH1efv19-LVbfvlxfLleFrZQcC95SyYWT1BrpagpSOeWEaipSt9KwljNHGmBCWkHFhjOxUU4qKXmlVMUA2AX6eNI9TJu9a6wbxmh6fchOTLzTwXj998_gd3objpoJJiVRWeDtg0AMt1N2ofc5CNf3ZnBhSppwzmWliJrRN_-gXZjikO1lihIlqRQsU_RE2RhSiq59PIaAnnvTnZ5703NvGmqde8tLr_-08bjyu6gMfDgBLod59C7qZP0cdOOjs6Nugv-f_j0d8afl</recordid><startdate>20130808</startdate><enddate>20130808</enddate><creator>Maples, Brian K.</creator><creator>Gravel, Simon</creator><creator>Kenny, Eimear E.</creator><creator>Bustamante, Carlos D.</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130808</creationdate><title>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</title><author>Maples, Brian K. ; Gravel, Simon ; Kenny, Eimear E. ; Bustamante, Carlos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asian People - genetics</topic><topic>Black or African American</topic><topic>Black People - genetics</topic><topic>Computer Simulation</topic><topic>Discriminant analysis</topic><topic>Ethnicity</topic><topic>Genealogy</topic><topic>Genetic Testing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Indians, North American - genetics</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Simulation</topic><topic>White People - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maples, Brian K.</creatorcontrib><creatorcontrib>Gravel, Simon</creatorcontrib><creatorcontrib>Kenny, Eimear E.</creatorcontrib><creatorcontrib>Bustamante, Carlos D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maples, Brian K.</au><au>Gravel, Simon</au><au>Kenny, Eimear E.</au><au>Bustamante, Carlos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2013-08-08</date><risdate>2013</risdate><volume>93</volume><issue>2</issue><spage>278</spage><epage>288</epage><pages>278-288</pages><issn>0002-9297</issn><issn>1537-6605</issn><eissn>1537-6605</eissn><abstract>Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23910464</pmid><doi>10.1016/j.ajhg.2013.06.020</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2013-08, Vol.93 (2), p.278-288
issn 0002-9297
1537-6605
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3738819
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Asian People - genetics
Black or African American
Black People - genetics
Computer Simulation
Discriminant analysis
Ethnicity
Genealogy
Genetic Testing
Genome, Human
Genomes
Haplotypes
Humans
Indians, North American - genetics
Mathematical models
Models, Genetic
Polymorphism, Single Nucleotide
Simulation
White People - genetics
title RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RFMix:%20A%20Discriminative%20Modeling%20Approach%20for%20Rapid%20and%20Robust%20Local-Ancestry%20Inference&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Maples,%20Brian%C2%A0K.&rft.date=2013-08-08&rft.volume=93&rft.issue=2&rft.spage=278&rft.epage=288&rft.pages=278-288&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2013.06.020&rft_dat=%3Cproquest_pubme%3E1444859199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1421982873&rft_id=info:pmid/23910464&rft_els_id=S0002929713002899&rfr_iscdi=true