RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference
Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discrimin...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2013-08, Vol.93 (2), p.278-288 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 2 |
container_start_page | 278 |
container_title | American journal of human genetics |
container_volume | 93 |
creator | Maples, Brian K. Gravel, Simon Kenny, Eimear E. Bustamante, Carlos D. |
description | Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%). |
doi_str_mv | 10.1016/j.ajhg.2013.06.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3738819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929713002899</els_id><sourcerecordid>1444859199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModlv9Aj5IwBdfZrz5M5NERFiq1cIWYVF8DNlMZjfD7GSbzCz22zfD1qI--BQu-d3DPecg9IpASYDU77rSdLttSYGwEuoSKDxBC1IxUdQ1VE_RAgBooagSZ-g8pQ6AEAnsOTqjTBHgNV-gn-urG__rPV7iTz7Z6Pd-MKM_OnwTGtf7YYuXh0MMxu5wGyJem4NvsBkavA6bKY14Fazpi-VgXRrjHb4eWhddnl6gZ63pk3v58F6gH1efv19-LVbfvlxfLleFrZQcC95SyYWT1BrpagpSOeWEaipSt9KwljNHGmBCWkHFhjOxUU4qKXmlVMUA2AX6eNI9TJu9a6wbxmh6fchOTLzTwXj998_gd3objpoJJiVRWeDtg0AMt1N2ofc5CNf3ZnBhSppwzmWliJrRN_-gXZjikO1lihIlqRQsU_RE2RhSiq59PIaAnnvTnZ5703NvGmqde8tLr_-08bjyu6gMfDgBLod59C7qZP0cdOOjs6Nugv-f_j0d8afl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1421982873</pqid></control><display><type>article</type><title>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Maples, Brian K. ; Gravel, Simon ; Kenny, Eimear E. ; Bustamante, Carlos D.</creator><creatorcontrib>Maples, Brian K. ; Gravel, Simon ; Kenny, Eimear E. ; Bustamante, Carlos D.</creatorcontrib><description>Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%).</description><identifier>ISSN: 0002-9297</identifier><identifier>ISSN: 1537-6605</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2013.06.020</identifier><identifier>PMID: 23910464</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Asian People - genetics ; Black or African American ; Black People - genetics ; Computer Simulation ; Discriminant analysis ; Ethnicity ; Genealogy ; Genetic Testing ; Genome, Human ; Genomes ; Haplotypes ; Humans ; Indians, North American - genetics ; Mathematical models ; Models, Genetic ; Polymorphism, Single Nucleotide ; Simulation ; White People - genetics</subject><ispartof>American journal of human genetics, 2013-08, Vol.93 (2), p.278-288</ispartof><rights>2013 The American Society of Human Genetics</rights><rights>Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press Aug 8, 2013</rights><rights>2013 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved. 2013 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</citedby><cites>FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738819/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929713002899$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23910464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maples, Brian K.</creatorcontrib><creatorcontrib>Gravel, Simon</creatorcontrib><creatorcontrib>Kenny, Eimear E.</creatorcontrib><creatorcontrib>Bustamante, Carlos D.</creatorcontrib><title>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%).</description><subject>Asian People - genetics</subject><subject>Black or African American</subject><subject>Black People - genetics</subject><subject>Computer Simulation</subject><subject>Discriminant analysis</subject><subject>Ethnicity</subject><subject>Genealogy</subject><subject>Genetic Testing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Indians, North American - genetics</subject><subject>Mathematical models</subject><subject>Models, Genetic</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Simulation</subject><subject>White People - genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV9rFDEUxYModlv9Aj5IwBdfZrz5M5NERFiq1cIWYVF8DNlMZjfD7GSbzCz22zfD1qI--BQu-d3DPecg9IpASYDU77rSdLttSYGwEuoSKDxBC1IxUdQ1VE_RAgBooagSZ-g8pQ6AEAnsOTqjTBHgNV-gn-urG__rPV7iTz7Z6Pd-MKM_OnwTGtf7YYuXh0MMxu5wGyJem4NvsBkavA6bKY14Fazpi-VgXRrjHb4eWhddnl6gZ63pk3v58F6gH1efv19-LVbfvlxfLleFrZQcC95SyYWT1BrpagpSOeWEaipSt9KwljNHGmBCWkHFhjOxUU4qKXmlVMUA2AX6eNI9TJu9a6wbxmh6fchOTLzTwXj998_gd3objpoJJiVRWeDtg0AMt1N2ofc5CNf3ZnBhSppwzmWliJrRN_-gXZjikO1lihIlqRQsU_RE2RhSiq59PIaAnnvTnZ5703NvGmqde8tLr_-08bjyu6gMfDgBLod59C7qZP0cdOOjs6Nugv-f_j0d8afl</recordid><startdate>20130808</startdate><enddate>20130808</enddate><creator>Maples, Brian K.</creator><creator>Gravel, Simon</creator><creator>Kenny, Eimear E.</creator><creator>Bustamante, Carlos D.</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130808</creationdate><title>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</title><author>Maples, Brian K. ; Gravel, Simon ; Kenny, Eimear E. ; Bustamante, Carlos D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-4f2847e82ca8e62089e9e79d516f8a3f43e1d0378c727b437b9e8988459953003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asian People - genetics</topic><topic>Black or African American</topic><topic>Black People - genetics</topic><topic>Computer Simulation</topic><topic>Discriminant analysis</topic><topic>Ethnicity</topic><topic>Genealogy</topic><topic>Genetic Testing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Indians, North American - genetics</topic><topic>Mathematical models</topic><topic>Models, Genetic</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Simulation</topic><topic>White People - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maples, Brian K.</creatorcontrib><creatorcontrib>Gravel, Simon</creatorcontrib><creatorcontrib>Kenny, Eimear E.</creatorcontrib><creatorcontrib>Bustamante, Carlos D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maples, Brian K.</au><au>Gravel, Simon</au><au>Kenny, Eimear E.</au><au>Bustamante, Carlos D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2013-08-08</date><risdate>2013</risdate><volume>93</volume><issue>2</issue><spage>278</spage><epage>288</epage><pages>278-288</pages><issn>0002-9297</issn><issn>1537-6605</issn><eissn>1537-6605</eissn><abstract>Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23910464</pmid><doi>10.1016/j.ajhg.2013.06.020</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2013-08, Vol.93 (2), p.278-288 |
issn | 0002-9297 1537-6605 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3738819 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Asian People - genetics Black or African American Black People - genetics Computer Simulation Discriminant analysis Ethnicity Genealogy Genetic Testing Genome, Human Genomes Haplotypes Humans Indians, North American - genetics Mathematical models Models, Genetic Polymorphism, Single Nucleotide Simulation White People - genetics |
title | RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RFMix:%20A%20Discriminative%20Modeling%20Approach%20for%20Rapid%20and%20Robust%20Local-Ancestry%20Inference&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Maples,%20Brian%C2%A0K.&rft.date=2013-08-08&rft.volume=93&rft.issue=2&rft.spage=278&rft.epage=288&rft.pages=278-288&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2013.06.020&rft_dat=%3Cproquest_pubme%3E1444859199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1421982873&rft_id=info:pmid/23910464&rft_els_id=S0002929713002899&rfr_iscdi=true |