Model-based sensor-augmented pump therapy
In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as...
Gespeichert in:
Veröffentlicht in: | Journal of diabetes science and technology 2013-03, Vol.7 (2), p.465-477 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 2 |
container_start_page | 465 |
container_title | Journal of diabetes science and technology |
container_volume | 7 |
creator | Grosman, Benyamin Voskanyan, Gayane Loutseiko, Mikhail Roy, Anirban Mehta, Aloke Kurtz, Natalie Parikh, Neha Kaufman, Francine R Mastrototaro, John J Keenan, Barry |
description | In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump.
A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested.
The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope.
The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data. |
doi_str_mv | 10.1177/193229681300700224 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23567006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</originalsourceid><addsrcrecordid>eNplkE9Lw0AQxRdRbK1-AQ_Sq4fozG6yk70IUvwHFS96XjbJpI00TdhthH57E1qL4mmGefN7MzwhLhFuEIlu0SgpjU5RARCAlPGRGA_DSCHQ8b4fNkbiLIRPgCROiU7FSKpE94Qei-vXpuBVlLnAxTTwOjQ-ct2i5vWmH7Rd3U43S_au3Z6Lk9KtAl_s60R8PD68z56j-dvTy-x-HuUqoThKHAOVbNIydRlkGhNWgNqgyYBBkmYp2TgiTjPGWJWYyBzloEhCStVE3O182y6rucj7T7xb2dZXtfNb27jK_lXW1dIumi-rSJGOTW8gdwa5b0LwXB5YBDsEZ_8H10NXv68ekJ-k1DcTNWfG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model-based sensor-augmented pump therapy</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Grosman, Benyamin ; Voskanyan, Gayane ; Loutseiko, Mikhail ; Roy, Anirban ; Mehta, Aloke ; Kurtz, Natalie ; Parikh, Neha ; Kaufman, Francine R ; Mastrototaro, John J ; Keenan, Barry</creator><creatorcontrib>Grosman, Benyamin ; Voskanyan, Gayane ; Loutseiko, Mikhail ; Roy, Anirban ; Mehta, Aloke ; Kurtz, Natalie ; Parikh, Neha ; Kaufman, Francine R ; Mastrototaro, John J ; Keenan, Barry</creatorcontrib><description>In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump.
A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested.
The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope.
The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.</description><identifier>ISSN: 1932-2968</identifier><identifier>EISSN: 1932-3107</identifier><identifier>DOI: 10.1177/193229681300700224</identifier><identifier>PMID: 23567006</identifier><language>eng</language><publisher>United States: Diabetes Technology Society</publisher><subject>Algorithms ; Animals ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Blood Glucose - analysis ; Blood Glucose Self-Monitoring - instrumentation ; Blood Glucose Self-Monitoring - methods ; Computer Simulation ; Diabetes Mellitus, Type 1 - blood ; Diabetes Mellitus, Type 1 - veterinary ; Dog Diseases - blood ; Dogs ; Hypoglycemic Agents - administration & dosage ; Hypoglycemic Agents - pharmacokinetics ; Insulin - administration & dosage ; Insulin - pharmacokinetics ; Insulin Infusion Systems ; Models, Theoretical ; Technology Report</subject><ispartof>Journal of diabetes science and technology, 2013-03, Vol.7 (2), p.465-477</ispartof><rights>2013 Diabetes Technology Society.</rights><rights>2013 Diabetes Technology Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</citedby><cites>FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737649/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737649/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23567006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Voskanyan, Gayane</creatorcontrib><creatorcontrib>Loutseiko, Mikhail</creatorcontrib><creatorcontrib>Roy, Anirban</creatorcontrib><creatorcontrib>Mehta, Aloke</creatorcontrib><creatorcontrib>Kurtz, Natalie</creatorcontrib><creatorcontrib>Parikh, Neha</creatorcontrib><creatorcontrib>Kaufman, Francine R</creatorcontrib><creatorcontrib>Mastrototaro, John J</creatorcontrib><creatorcontrib>Keenan, Barry</creatorcontrib><title>Model-based sensor-augmented pump therapy</title><title>Journal of diabetes science and technology</title><addtitle>J Diabetes Sci Technol</addtitle><description>In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump.
A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested.
The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope.
The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Blood Glucose - analysis</subject><subject>Blood Glucose Self-Monitoring - instrumentation</subject><subject>Blood Glucose Self-Monitoring - methods</subject><subject>Computer Simulation</subject><subject>Diabetes Mellitus, Type 1 - blood</subject><subject>Diabetes Mellitus, Type 1 - veterinary</subject><subject>Dog Diseases - blood</subject><subject>Dogs</subject><subject>Hypoglycemic Agents - administration & dosage</subject><subject>Hypoglycemic Agents - pharmacokinetics</subject><subject>Insulin - administration & dosage</subject><subject>Insulin - pharmacokinetics</subject><subject>Insulin Infusion Systems</subject><subject>Models, Theoretical</subject><subject>Technology Report</subject><issn>1932-2968</issn><issn>1932-3107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE9Lw0AQxRdRbK1-AQ_Sq4fozG6yk70IUvwHFS96XjbJpI00TdhthH57E1qL4mmGefN7MzwhLhFuEIlu0SgpjU5RARCAlPGRGA_DSCHQ8b4fNkbiLIRPgCROiU7FSKpE94Qei-vXpuBVlLnAxTTwOjQ-ct2i5vWmH7Rd3U43S_au3Z6Lk9KtAl_s60R8PD68z56j-dvTy-x-HuUqoThKHAOVbNIydRlkGhNWgNqgyYBBkmYp2TgiTjPGWJWYyBzloEhCStVE3O182y6rucj7T7xb2dZXtfNb27jK_lXW1dIumi-rSJGOTW8gdwa5b0LwXB5YBDsEZ_8H10NXv68ekJ-k1DcTNWfG</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Grosman, Benyamin</creator><creator>Voskanyan, Gayane</creator><creator>Loutseiko, Mikhail</creator><creator>Roy, Anirban</creator><creator>Mehta, Aloke</creator><creator>Kurtz, Natalie</creator><creator>Parikh, Neha</creator><creator>Kaufman, Francine R</creator><creator>Mastrototaro, John J</creator><creator>Keenan, Barry</creator><general>Diabetes Technology Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201303</creationdate><title>Model-based sensor-augmented pump therapy</title><author>Grosman, Benyamin ; Voskanyan, Gayane ; Loutseiko, Mikhail ; Roy, Anirban ; Mehta, Aloke ; Kurtz, Natalie ; Parikh, Neha ; Kaufman, Francine R ; Mastrototaro, John J ; Keenan, Barry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Blood Glucose - analysis</topic><topic>Blood Glucose Self-Monitoring - instrumentation</topic><topic>Blood Glucose Self-Monitoring - methods</topic><topic>Computer Simulation</topic><topic>Diabetes Mellitus, Type 1 - blood</topic><topic>Diabetes Mellitus, Type 1 - veterinary</topic><topic>Dog Diseases - blood</topic><topic>Dogs</topic><topic>Hypoglycemic Agents - administration & dosage</topic><topic>Hypoglycemic Agents - pharmacokinetics</topic><topic>Insulin - administration & dosage</topic><topic>Insulin - pharmacokinetics</topic><topic>Insulin Infusion Systems</topic><topic>Models, Theoretical</topic><topic>Technology Report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Voskanyan, Gayane</creatorcontrib><creatorcontrib>Loutseiko, Mikhail</creatorcontrib><creatorcontrib>Roy, Anirban</creatorcontrib><creatorcontrib>Mehta, Aloke</creatorcontrib><creatorcontrib>Kurtz, Natalie</creatorcontrib><creatorcontrib>Parikh, Neha</creatorcontrib><creatorcontrib>Kaufman, Francine R</creatorcontrib><creatorcontrib>Mastrototaro, John J</creatorcontrib><creatorcontrib>Keenan, Barry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of diabetes science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosman, Benyamin</au><au>Voskanyan, Gayane</au><au>Loutseiko, Mikhail</au><au>Roy, Anirban</au><au>Mehta, Aloke</au><au>Kurtz, Natalie</au><au>Parikh, Neha</au><au>Kaufman, Francine R</au><au>Mastrototaro, John J</au><au>Keenan, Barry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based sensor-augmented pump therapy</atitle><jtitle>Journal of diabetes science and technology</jtitle><addtitle>J Diabetes Sci Technol</addtitle><date>2013-03</date><risdate>2013</risdate><volume>7</volume><issue>2</issue><spage>465</spage><epage>477</epage><pages>465-477</pages><issn>1932-2968</issn><eissn>1932-3107</eissn><abstract>In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump.
A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested.
The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope.
The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.</abstract><cop>United States</cop><pub>Diabetes Technology Society</pub><pmid>23567006</pmid><doi>10.1177/193229681300700224</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-2968 |
ispartof | Journal of diabetes science and technology, 2013-03, Vol.7 (2), p.465-477 |
issn | 1932-2968 1932-3107 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737649 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; SAGE Complete; PubMed Central |
subjects | Algorithms Animals Biosensing Techniques - instrumentation Biosensing Techniques - methods Blood Glucose - analysis Blood Glucose Self-Monitoring - instrumentation Blood Glucose Self-Monitoring - methods Computer Simulation Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - veterinary Dog Diseases - blood Dogs Hypoglycemic Agents - administration & dosage Hypoglycemic Agents - pharmacokinetics Insulin - administration & dosage Insulin - pharmacokinetics Insulin Infusion Systems Models, Theoretical Technology Report |
title | Model-based sensor-augmented pump therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20sensor-augmented%20pump%20therapy&rft.jtitle=Journal%20of%20diabetes%20science%20and%20technology&rft.au=Grosman,%20Benyamin&rft.date=2013-03&rft.volume=7&rft.issue=2&rft.spage=465&rft.epage=477&rft.pages=465-477&rft.issn=1932-2968&rft.eissn=1932-3107&rft_id=info:doi/10.1177/193229681300700224&rft_dat=%3Cpubmed_cross%3E23567006%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23567006&rfr_iscdi=true |