Model-based sensor-augmented pump therapy

In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of diabetes science and technology 2013-03, Vol.7 (2), p.465-477
Hauptverfasser: Grosman, Benyamin, Voskanyan, Gayane, Loutseiko, Mikhail, Roy, Anirban, Mehta, Aloke, Kurtz, Natalie, Parikh, Neha, Kaufman, Francine R, Mastrototaro, John J, Keenan, Barry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 2
container_start_page 465
container_title Journal of diabetes science and technology
container_volume 7
creator Grosman, Benyamin
Voskanyan, Gayane
Loutseiko, Mikhail
Roy, Anirban
Mehta, Aloke
Kurtz, Natalie
Parikh, Neha
Kaufman, Francine R
Mastrototaro, John J
Keenan, Barry
description In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump. A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested. The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope. The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.
doi_str_mv 10.1177/193229681300700224
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23567006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</originalsourceid><addsrcrecordid>eNplkE9Lw0AQxRdRbK1-AQ_Sq4fozG6yk70IUvwHFS96XjbJpI00TdhthH57E1qL4mmGefN7MzwhLhFuEIlu0SgpjU5RARCAlPGRGA_DSCHQ8b4fNkbiLIRPgCROiU7FSKpE94Qei-vXpuBVlLnAxTTwOjQ-ct2i5vWmH7Rd3U43S_au3Z6Lk9KtAl_s60R8PD68z56j-dvTy-x-HuUqoThKHAOVbNIydRlkGhNWgNqgyYBBkmYp2TgiTjPGWJWYyBzloEhCStVE3O182y6rucj7T7xb2dZXtfNb27jK_lXW1dIumi-rSJGOTW8gdwa5b0LwXB5YBDsEZ_8H10NXv68ekJ-k1DcTNWfG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model-based sensor-augmented pump therapy</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Grosman, Benyamin ; Voskanyan, Gayane ; Loutseiko, Mikhail ; Roy, Anirban ; Mehta, Aloke ; Kurtz, Natalie ; Parikh, Neha ; Kaufman, Francine R ; Mastrototaro, John J ; Keenan, Barry</creator><creatorcontrib>Grosman, Benyamin ; Voskanyan, Gayane ; Loutseiko, Mikhail ; Roy, Anirban ; Mehta, Aloke ; Kurtz, Natalie ; Parikh, Neha ; Kaufman, Francine R ; Mastrototaro, John J ; Keenan, Barry</creatorcontrib><description>In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump. A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested. The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope. The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.</description><identifier>ISSN: 1932-2968</identifier><identifier>EISSN: 1932-3107</identifier><identifier>DOI: 10.1177/193229681300700224</identifier><identifier>PMID: 23567006</identifier><language>eng</language><publisher>United States: Diabetes Technology Society</publisher><subject>Algorithms ; Animals ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Blood Glucose - analysis ; Blood Glucose Self-Monitoring - instrumentation ; Blood Glucose Self-Monitoring - methods ; Computer Simulation ; Diabetes Mellitus, Type 1 - blood ; Diabetes Mellitus, Type 1 - veterinary ; Dog Diseases - blood ; Dogs ; Hypoglycemic Agents - administration &amp; dosage ; Hypoglycemic Agents - pharmacokinetics ; Insulin - administration &amp; dosage ; Insulin - pharmacokinetics ; Insulin Infusion Systems ; Models, Theoretical ; Technology Report</subject><ispartof>Journal of diabetes science and technology, 2013-03, Vol.7 (2), p.465-477</ispartof><rights>2013 Diabetes Technology Society.</rights><rights>2013 Diabetes Technology Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</citedby><cites>FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737649/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737649/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23567006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Voskanyan, Gayane</creatorcontrib><creatorcontrib>Loutseiko, Mikhail</creatorcontrib><creatorcontrib>Roy, Anirban</creatorcontrib><creatorcontrib>Mehta, Aloke</creatorcontrib><creatorcontrib>Kurtz, Natalie</creatorcontrib><creatorcontrib>Parikh, Neha</creatorcontrib><creatorcontrib>Kaufman, Francine R</creatorcontrib><creatorcontrib>Mastrototaro, John J</creatorcontrib><creatorcontrib>Keenan, Barry</creatorcontrib><title>Model-based sensor-augmented pump therapy</title><title>Journal of diabetes science and technology</title><addtitle>J Diabetes Sci Technol</addtitle><description>In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump. A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested. The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope. The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Blood Glucose - analysis</subject><subject>Blood Glucose Self-Monitoring - instrumentation</subject><subject>Blood Glucose Self-Monitoring - methods</subject><subject>Computer Simulation</subject><subject>Diabetes Mellitus, Type 1 - blood</subject><subject>Diabetes Mellitus, Type 1 - veterinary</subject><subject>Dog Diseases - blood</subject><subject>Dogs</subject><subject>Hypoglycemic Agents - administration &amp; dosage</subject><subject>Hypoglycemic Agents - pharmacokinetics</subject><subject>Insulin - administration &amp; dosage</subject><subject>Insulin - pharmacokinetics</subject><subject>Insulin Infusion Systems</subject><subject>Models, Theoretical</subject><subject>Technology Report</subject><issn>1932-2968</issn><issn>1932-3107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE9Lw0AQxRdRbK1-AQ_Sq4fozG6yk70IUvwHFS96XjbJpI00TdhthH57E1qL4mmGefN7MzwhLhFuEIlu0SgpjU5RARCAlPGRGA_DSCHQ8b4fNkbiLIRPgCROiU7FSKpE94Qei-vXpuBVlLnAxTTwOjQ-ct2i5vWmH7Rd3U43S_au3Z6Lk9KtAl_s60R8PD68z56j-dvTy-x-HuUqoThKHAOVbNIydRlkGhNWgNqgyYBBkmYp2TgiTjPGWJWYyBzloEhCStVE3O182y6rucj7T7xb2dZXtfNb27jK_lXW1dIumi-rSJGOTW8gdwa5b0LwXB5YBDsEZ_8H10NXv68ekJ-k1DcTNWfG</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Grosman, Benyamin</creator><creator>Voskanyan, Gayane</creator><creator>Loutseiko, Mikhail</creator><creator>Roy, Anirban</creator><creator>Mehta, Aloke</creator><creator>Kurtz, Natalie</creator><creator>Parikh, Neha</creator><creator>Kaufman, Francine R</creator><creator>Mastrototaro, John J</creator><creator>Keenan, Barry</creator><general>Diabetes Technology Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201303</creationdate><title>Model-based sensor-augmented pump therapy</title><author>Grosman, Benyamin ; Voskanyan, Gayane ; Loutseiko, Mikhail ; Roy, Anirban ; Mehta, Aloke ; Kurtz, Natalie ; Parikh, Neha ; Kaufman, Francine R ; Mastrototaro, John J ; Keenan, Barry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-5ae07fe98f8ab0b615e3016919b0e0276e22e9a77e8be143f152c120276271783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Blood Glucose - analysis</topic><topic>Blood Glucose Self-Monitoring - instrumentation</topic><topic>Blood Glucose Self-Monitoring - methods</topic><topic>Computer Simulation</topic><topic>Diabetes Mellitus, Type 1 - blood</topic><topic>Diabetes Mellitus, Type 1 - veterinary</topic><topic>Dog Diseases - blood</topic><topic>Dogs</topic><topic>Hypoglycemic Agents - administration &amp; dosage</topic><topic>Hypoglycemic Agents - pharmacokinetics</topic><topic>Insulin - administration &amp; dosage</topic><topic>Insulin - pharmacokinetics</topic><topic>Insulin Infusion Systems</topic><topic>Models, Theoretical</topic><topic>Technology Report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grosman, Benyamin</creatorcontrib><creatorcontrib>Voskanyan, Gayane</creatorcontrib><creatorcontrib>Loutseiko, Mikhail</creatorcontrib><creatorcontrib>Roy, Anirban</creatorcontrib><creatorcontrib>Mehta, Aloke</creatorcontrib><creatorcontrib>Kurtz, Natalie</creatorcontrib><creatorcontrib>Parikh, Neha</creatorcontrib><creatorcontrib>Kaufman, Francine R</creatorcontrib><creatorcontrib>Mastrototaro, John J</creatorcontrib><creatorcontrib>Keenan, Barry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of diabetes science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosman, Benyamin</au><au>Voskanyan, Gayane</au><au>Loutseiko, Mikhail</au><au>Roy, Anirban</au><au>Mehta, Aloke</au><au>Kurtz, Natalie</au><au>Parikh, Neha</au><au>Kaufman, Francine R</au><au>Mastrototaro, John J</au><au>Keenan, Barry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based sensor-augmented pump therapy</atitle><jtitle>Journal of diabetes science and technology</jtitle><addtitle>J Diabetes Sci Technol</addtitle><date>2013-03</date><risdate>2013</risdate><volume>7</volume><issue>2</issue><spage>465</spage><epage>477</epage><pages>465-477</pages><issn>1932-2968</issn><eissn>1932-3107</eissn><abstract>In insulin pump therapy, optimization of bolus and basal insulin dose settings is a challenge. We introduce a new algorithm that provides individualized basal rates and new carbohydrate ratio and correction factor recommendations. The algorithm utilizes a mathematical model of blood glucose (BG) as a function of carbohydrate intake and delivered insulin, which includes individualized parameters derived from sensor BG and insulin delivery data downloaded from a patient's pump. A mathematical model of BG as a function of carbohydrate intake and delivered insulin was developed. The model includes fixed parameters and several individualized parameters derived from the subject's BG measurements and pump data. Performance of the new algorithm was assessed using n = 4 diabetic canine experiments over a 32 h duration. In addition, 10 in silico adults from the University of Virginia/Padova type 1 diabetes mellitus metabolic simulator were tested. The percentage of time in glucose range 80-180 mg/dl was 86%, 85%, 61%, and 30% using model-based therapy and [78%, 100%] (brackets denote multiple experiments conducted under the same therapy and animal model), [75%, 67%], 47%, and 86% for the control experiments for dogs 1 to 4, respectively. The BG measurements obtained in the simulation using our individualized algorithm were in 61-231 mg/dl min-max envelope, whereas use of the simulator's default treatment resulted in BG measurements 90-210 mg/dl min-max envelope. The study results demonstrate the potential of this method, which could serve as a platform for improving, facilitating, and standardizing insulin pump therapy based on a single download of data.</abstract><cop>United States</cop><pub>Diabetes Technology Society</pub><pmid>23567006</pmid><doi>10.1177/193229681300700224</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-2968
ispartof Journal of diabetes science and technology, 2013-03, Vol.7 (2), p.465-477
issn 1932-2968
1932-3107
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3737649
source MEDLINE; EZB-FREE-00999 freely available EZB journals; SAGE Complete; PubMed Central
subjects Algorithms
Animals
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Blood Glucose - analysis
Blood Glucose Self-Monitoring - instrumentation
Blood Glucose Self-Monitoring - methods
Computer Simulation
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - veterinary
Dog Diseases - blood
Dogs
Hypoglycemic Agents - administration & dosage
Hypoglycemic Agents - pharmacokinetics
Insulin - administration & dosage
Insulin - pharmacokinetics
Insulin Infusion Systems
Models, Theoretical
Technology Report
title Model-based sensor-augmented pump therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20sensor-augmented%20pump%20therapy&rft.jtitle=Journal%20of%20diabetes%20science%20and%20technology&rft.au=Grosman,%20Benyamin&rft.date=2013-03&rft.volume=7&rft.issue=2&rft.spage=465&rft.epage=477&rft.pages=465-477&rft.issn=1932-2968&rft.eissn=1932-3107&rft_id=info:doi/10.1177/193229681300700224&rft_dat=%3Cpubmed_cross%3E23567006%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23567006&rfr_iscdi=true