Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI
Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedb...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2013-11, Vol.81, p.422-430 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | |
container_start_page | 422 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 81 |
creator | Koush, Yury Rosa, Maria Joao Robineau, Fabien Heinen, Klaartje W. Rieger, Sebastian Weiskopf, Nikolaus Vuilleumier, Patrik Van De Ville, Dimitri Scharnowski, Frank |
description | Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks.
•We adapt DCM for use in neurofeedback experiments.•Participants can control a DCM-based neurofeedback signal.•Real-time DCM allows for voluntary control over brain connectivity. |
doi_str_mv | 10.1016/j.neuroimage.2013.05.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3734349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913005028</els_id><sourcerecordid>1415605394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636t-466ce4b4633bfbc5dc808d1df47e6df53e7205816c5d710e3203d65ab4da01b93</originalsourceid><addsrcrecordid>eNqFkl2L1DAUhoso7rr6F6QggjcdT5qv1gtBx6-FEUH0OqTJ6ZixTXaTdmD-vakz7qo3e5XAec7LOe97iqIksCJAxMvdyuMcgxv1Flc1ELoCvgIC94pzAi2vWi7r-8uf06ohpD0rHqW0A4CWsOZhcVZTIZpWyPNisw7eo5nc3k2HqtMJbflbu0e0nTY_X5XvDl6PzpRGz0kP5RgsDs5vyz7EMqIeqsmNWPafv14-Lh70ekj45PReFN8_vP-2_lRtvny8XL_ZVEZQMVVMCIOsY4LSru8Mt6aBxhLbM4nC9pyirIE3ROSSJIC0BmoF1x2zGkjX0ovi9VH3au5GtAb9FPWgrmI2JB5U0E79W_Huh9qGvaKSMsoWgRcngRiuZ0yTGl0yOAzaY5iTIhxACtLU9d0oI1xkn1uW0Wf_obswR5-dyIJMUsIk0Ew1R8rEkFLE_mZuAmpJV-3UbbpqSVcBVznd3Pr0771vGv_EmYHnJ0Ano4c-am9cuuWkoAzEstTbI4c5pb3DqJJx6A1aF_MxKBvc3dP8ApNcyAo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547314703</pqid></control><display><type>article</type><title>Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Koush, Yury ; Rosa, Maria Joao ; Robineau, Fabien ; Heinen, Klaartje ; W. Rieger, Sebastian ; Weiskopf, Nikolaus ; Vuilleumier, Patrik ; Van De Ville, Dimitri ; Scharnowski, Frank</creator><creatorcontrib>Koush, Yury ; Rosa, Maria Joao ; Robineau, Fabien ; Heinen, Klaartje ; W. Rieger, Sebastian ; Weiskopf, Nikolaus ; Vuilleumier, Patrik ; Van De Ville, Dimitri ; Scharnowski, Frank</creatorcontrib><description>Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks.
•We adapt DCM for use in neurofeedback experiments.•Participants can control a DCM-based neurofeedback signal.•Real-time DCM allows for voluntary control over brain connectivity.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.05.010</identifier><identifier>PMID: 23668967</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adult ; Attention - physiology ; Attention deficit hyperactivity disorder ; Biological and medical sciences ; Brain ; Brain - physiology ; Brain connectivity ; Brain Mapping - methods ; Dynamic causal modeling (DCM) ; Female ; Functional magnetic resonance imaging (fMRI) ; Fundamental and applied biological sciences. Psychology ; Heart rate ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Male ; Neural Pathways - physiology ; Neurofeedback ; Neurofeedback - methods ; Real-time fMRI ; Studies ; Vertebrates: nervous system and sense organs</subject><ispartof>NeuroImage (Orlando, Fla.), 2013-11, Vol.81, p.422-430</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 1, 2013</rights><rights>2013 Elsevier Inc. 2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c636t-466ce4b4633bfbc5dc808d1df47e6df53e7205816c5d710e3203d65ab4da01b93</citedby><cites>FETCH-LOGICAL-c636t-466ce4b4633bfbc5dc808d1df47e6df53e7205816c5d710e3203d65ab4da01b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811913005028$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27634062$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23668967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koush, Yury</creatorcontrib><creatorcontrib>Rosa, Maria Joao</creatorcontrib><creatorcontrib>Robineau, Fabien</creatorcontrib><creatorcontrib>Heinen, Klaartje</creatorcontrib><creatorcontrib>W. Rieger, Sebastian</creatorcontrib><creatorcontrib>Weiskopf, Nikolaus</creatorcontrib><creatorcontrib>Vuilleumier, Patrik</creatorcontrib><creatorcontrib>Van De Ville, Dimitri</creatorcontrib><creatorcontrib>Scharnowski, Frank</creatorcontrib><title>Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks.
•We adapt DCM for use in neurofeedback experiments.•Participants can control a DCM-based neurofeedback signal.•Real-time DCM allows for voluntary control over brain connectivity.</description><subject>Adult</subject><subject>Attention - physiology</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain connectivity</subject><subject>Brain Mapping - methods</subject><subject>Dynamic causal modeling (DCM)</subject><subject>Female</subject><subject>Functional magnetic resonance imaging (fMRI)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Neural Pathways - physiology</subject><subject>Neurofeedback</subject><subject>Neurofeedback - methods</subject><subject>Real-time fMRI</subject><subject>Studies</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkl2L1DAUhoso7rr6F6QggjcdT5qv1gtBx6-FEUH0OqTJ6ZixTXaTdmD-vakz7qo3e5XAec7LOe97iqIksCJAxMvdyuMcgxv1Flc1ELoCvgIC94pzAi2vWi7r-8uf06ohpD0rHqW0A4CWsOZhcVZTIZpWyPNisw7eo5nc3k2HqtMJbflbu0e0nTY_X5XvDl6PzpRGz0kP5RgsDs5vyz7EMqIeqsmNWPafv14-Lh70ekj45PReFN8_vP-2_lRtvny8XL_ZVEZQMVVMCIOsY4LSru8Mt6aBxhLbM4nC9pyirIE3ROSSJIC0BmoF1x2zGkjX0ovi9VH3au5GtAb9FPWgrmI2JB5U0E79W_Huh9qGvaKSMsoWgRcngRiuZ0yTGl0yOAzaY5iTIhxACtLU9d0oI1xkn1uW0Wf_obswR5-dyIJMUsIk0Ew1R8rEkFLE_mZuAmpJV-3UbbpqSVcBVznd3Pr0771vGv_EmYHnJ0Ano4c-am9cuuWkoAzEstTbI4c5pb3DqJJx6A1aF_MxKBvc3dP8ApNcyAo</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Koush, Yury</creator><creator>Rosa, Maria Joao</creator><creator>Robineau, Fabien</creator><creator>Heinen, Klaartje</creator><creator>W. Rieger, Sebastian</creator><creator>Weiskopf, Nikolaus</creator><creator>Vuilleumier, Patrik</creator><creator>Van De Ville, Dimitri</creator><creator>Scharnowski, Frank</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI</title><author>Koush, Yury ; Rosa, Maria Joao ; Robineau, Fabien ; Heinen, Klaartje ; W. Rieger, Sebastian ; Weiskopf, Nikolaus ; Vuilleumier, Patrik ; Van De Ville, Dimitri ; Scharnowski, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636t-466ce4b4633bfbc5dc808d1df47e6df53e7205816c5d710e3203d65ab4da01b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Attention - physiology</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain connectivity</topic><topic>Brain Mapping - methods</topic><topic>Dynamic causal modeling (DCM)</topic><topic>Female</topic><topic>Functional magnetic resonance imaging (fMRI)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Neural Pathways - physiology</topic><topic>Neurofeedback</topic><topic>Neurofeedback - methods</topic><topic>Real-time fMRI</topic><topic>Studies</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koush, Yury</creatorcontrib><creatorcontrib>Rosa, Maria Joao</creatorcontrib><creatorcontrib>Robineau, Fabien</creatorcontrib><creatorcontrib>Heinen, Klaartje</creatorcontrib><creatorcontrib>W. Rieger, Sebastian</creatorcontrib><creatorcontrib>Weiskopf, Nikolaus</creatorcontrib><creatorcontrib>Vuilleumier, Patrik</creatorcontrib><creatorcontrib>Van De Ville, Dimitri</creatorcontrib><creatorcontrib>Scharnowski, Frank</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koush, Yury</au><au>Rosa, Maria Joao</au><au>Robineau, Fabien</au><au>Heinen, Klaartje</au><au>W. Rieger, Sebastian</au><au>Weiskopf, Nikolaus</au><au>Vuilleumier, Patrik</au><au>Van De Ville, Dimitri</au><au>Scharnowski, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>81</volume><spage>422</spage><epage>430</epage><pages>422-430</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks.
•We adapt DCM for use in neurofeedback experiments.•Participants can control a DCM-based neurofeedback signal.•Real-time DCM allows for voluntary control over brain connectivity.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23668967</pmid><doi>10.1016/j.neuroimage.2013.05.010</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2013-11, Vol.81, p.422-430 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3734349 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Attention - physiology Attention deficit hyperactivity disorder Biological and medical sciences Brain Brain - physiology Brain connectivity Brain Mapping - methods Dynamic causal modeling (DCM) Female Functional magnetic resonance imaging (fMRI) Fundamental and applied biological sciences. Psychology Heart rate Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Neural Pathways - physiology Neurofeedback Neurofeedback - methods Real-time fMRI Studies Vertebrates: nervous system and sense organs |
title | Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity-based%20neurofeedback:%20Dynamic%20causal%20modeling%20for%20real-time%20fMRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Koush,%20Yury&rft.date=2013-11-01&rft.volume=81&rft.spage=422&rft.epage=430&rft.pages=422-430&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.05.010&rft_dat=%3Cproquest_pubme%3E1415605394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547314703&rft_id=info:pmid/23668967&rft_els_id=S1053811913005028&rfr_iscdi=true |