Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons

Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2013-08, Vol.16 (8), p.1068-1076
Hauptverfasser: Pfeffer, Carsten K, Xue, Mingshan, He, Miao, Huang, Z Josh, Scanziani, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1076
container_issue 8
container_start_page 1068
container_title Nature neuroscience
container_volume 16
creator Pfeffer, Carsten K
Xue, Mingshan
He, Miao
Huang, Z Josh
Scanziani, Massimo
description Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex. Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.
doi_str_mv 10.1038/nn.3446
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3729586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341556585</galeid><sourcerecordid>A341556585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</originalsourceid><addsrcrecordid>eNqNkktv1DAQxyMEog8Q3wBF4gAcsvgdmwNSVfFYqRISj7PldSZZV4ldbKfQb19HLd1uxQH54Mf85i_Pf6aqXmC0wojKd96vKGPiUXWIORMNbol4XM5ItY0gXBxURymdI4RaLtXT6oBQiVvO1GE1rf3WbVx2wdehr93u5nx96dJsxtqGmOHP-zpvoR7D4OxC2uA92IVM9QbybwBfT2EEO48mjld151J23uaikyF6mGMhn1VPejMmeH67H1c_P338cfqlOfv6eX16ctZYQVFuWsWIQZgAsbhrS2EGBBMS0w0I0jMkhaUYY0K7znDTW4WklAoZyTbAUdfR4-rDje7FvJmgs-BzNKO-iG4y8UoH4_R-xLutHsKlpi1RXIoi8OZWIIZfM6SsJ5csjKPxEOakMcOKCsUF-R-UYkEwUwV99QA9D3P0xYmFIlwSJcSOGswI2vk-lC_aRVSfUIY5F1zyQq3-QZXVweRKc6B35X0v4e1eQmFKV_Ng5pT0-vu3ffb1DWtjSClCf2cdRnoZOO29XgaukC_vO33H_Z2wnT2phPwA8V7ND7SuAUR93P0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412582966</pqid></control><display><type>article</type><title>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Pfeffer, Carsten K ; Xue, Mingshan ; He, Miao ; Huang, Z Josh ; Scanziani, Massimo</creator><creatorcontrib>Pfeffer, Carsten K ; Xue, Mingshan ; He, Miao ; Huang, Z Josh ; Scanziani, Massimo</creatorcontrib><description>Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex. Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3446</identifier><identifier>PMID: 23817549</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1697/1691 ; 631/378/2613 ; 631/378/340 ; Animal Genetics and Genomics ; Animals ; Antibodies ; Behavioral Sciences ; Biological Techniques ; Biomarkers ; Biomedicine ; Channelrhodopsins ; Female ; Genes, Reporter ; Inhibitory Postsynaptic Potentials - radiation effects ; Interneurons ; Interneurons - chemistry ; Interneurons - classification ; Interneurons - physiology ; Laboratories ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Morphology ; Nerve Tissue Proteins - analysis ; Neural Inhibition - physiology ; Neurobiology ; Neurophysiology ; Neurosciences ; Optogenetics ; Organophosphorus Compounds - pharmacology ; Parvalbumins - analysis ; Patch-Clamp Techniques ; Photic Stimulation ; Physiological aspects ; Principal Component Analysis ; Pyramidal Cells - physiology ; Quinoxalines - pharmacology ; Recombinant Fusion Proteins - physiology ; Somatostatin - analysis ; Synaptic Transmission - physiology ; Synaptic Transmission - radiation effects ; Vasoactive Intestinal Peptide - analysis ; Visual cortex ; Visual Cortex - physiology</subject><ispartof>Nature neuroscience, 2013-08, Vol.16 (8), p.1068-1076</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</citedby><cites>FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3446$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3446$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23817549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pfeffer, Carsten K</creatorcontrib><creatorcontrib>Xue, Mingshan</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Huang, Z Josh</creatorcontrib><creatorcontrib>Scanziani, Massimo</creatorcontrib><title>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex. Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.</description><subject>631/378/1697/1691</subject><subject>631/378/2613</subject><subject>631/378/340</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomarkers</subject><subject>Biomedicine</subject><subject>Channelrhodopsins</subject><subject>Female</subject><subject>Genes, Reporter</subject><subject>Inhibitory Postsynaptic Potentials - radiation effects</subject><subject>Interneurons</subject><subject>Interneurons - chemistry</subject><subject>Interneurons - classification</subject><subject>Interneurons - physiology</subject><subject>Laboratories</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Morphology</subject><subject>Nerve Tissue Proteins - analysis</subject><subject>Neural Inhibition - physiology</subject><subject>Neurobiology</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Optogenetics</subject><subject>Organophosphorus Compounds - pharmacology</subject><subject>Parvalbumins - analysis</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation</subject><subject>Physiological aspects</subject><subject>Principal Component Analysis</subject><subject>Pyramidal Cells - physiology</subject><subject>Quinoxalines - pharmacology</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Somatostatin - analysis</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Transmission - radiation effects</subject><subject>Vasoactive Intestinal Peptide - analysis</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1DAQxyMEog8Q3wBF4gAcsvgdmwNSVfFYqRISj7PldSZZV4ldbKfQb19HLd1uxQH54Mf85i_Pf6aqXmC0wojKd96vKGPiUXWIORMNbol4XM5ItY0gXBxURymdI4RaLtXT6oBQiVvO1GE1rf3WbVx2wdehr93u5nx96dJsxtqGmOHP-zpvoR7D4OxC2uA92IVM9QbybwBfT2EEO48mjld151J23uaikyF6mGMhn1VPejMmeH67H1c_P338cfqlOfv6eX16ctZYQVFuWsWIQZgAsbhrS2EGBBMS0w0I0jMkhaUYY0K7znDTW4WklAoZyTbAUdfR4-rDje7FvJmgs-BzNKO-iG4y8UoH4_R-xLutHsKlpi1RXIoi8OZWIIZfM6SsJ5csjKPxEOakMcOKCsUF-R-UYkEwUwV99QA9D3P0xYmFIlwSJcSOGswI2vk-lC_aRVSfUIY5F1zyQq3-QZXVweRKc6B35X0v4e1eQmFKV_Ng5pT0-vu3ffb1DWtjSClCf2cdRnoZOO29XgaukC_vO33H_Z2wnT2phPwA8V7ND7SuAUR93P0</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Pfeffer, Carsten K</creator><creator>Xue, Mingshan</creator><creator>He, Miao</creator><creator>Huang, Z Josh</creator><creator>Scanziani, Massimo</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</title><author>Pfeffer, Carsten K ; Xue, Mingshan ; He, Miao ; Huang, Z Josh ; Scanziani, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/378/1697/1691</topic><topic>631/378/2613</topic><topic>631/378/340</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomarkers</topic><topic>Biomedicine</topic><topic>Channelrhodopsins</topic><topic>Female</topic><topic>Genes, Reporter</topic><topic>Inhibitory Postsynaptic Potentials - radiation effects</topic><topic>Interneurons</topic><topic>Interneurons - chemistry</topic><topic>Interneurons - classification</topic><topic>Interneurons - physiology</topic><topic>Laboratories</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Morphology</topic><topic>Nerve Tissue Proteins - analysis</topic><topic>Neural Inhibition - physiology</topic><topic>Neurobiology</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Optogenetics</topic><topic>Organophosphorus Compounds - pharmacology</topic><topic>Parvalbumins - analysis</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation</topic><topic>Physiological aspects</topic><topic>Principal Component Analysis</topic><topic>Pyramidal Cells - physiology</topic><topic>Quinoxalines - pharmacology</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Somatostatin - analysis</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Transmission - radiation effects</topic><topic>Vasoactive Intestinal Peptide - analysis</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfeffer, Carsten K</creatorcontrib><creatorcontrib>Xue, Mingshan</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Huang, Z Josh</creatorcontrib><creatorcontrib>Scanziani, Massimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfeffer, Carsten K</au><au>Xue, Mingshan</au><au>He, Miao</au><au>Huang, Z Josh</au><au>Scanziani, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>16</volume><issue>8</issue><spage>1068</spage><epage>1076</epage><pages>1068-1076</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex. Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23817549</pmid><doi>10.1038/nn.3446</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2013-08, Vol.16 (8), p.1068-1076
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3729586
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/378/1697/1691
631/378/2613
631/378/340
Animal Genetics and Genomics
Animals
Antibodies
Behavioral Sciences
Biological Techniques
Biomarkers
Biomedicine
Channelrhodopsins
Female
Genes, Reporter
Inhibitory Postsynaptic Potentials - radiation effects
Interneurons
Interneurons - chemistry
Interneurons - classification
Interneurons - physiology
Laboratories
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Morphology
Nerve Tissue Proteins - analysis
Neural Inhibition - physiology
Neurobiology
Neurophysiology
Neurosciences
Optogenetics
Organophosphorus Compounds - pharmacology
Parvalbumins - analysis
Patch-Clamp Techniques
Photic Stimulation
Physiological aspects
Principal Component Analysis
Pyramidal Cells - physiology
Quinoxalines - pharmacology
Recombinant Fusion Proteins - physiology
Somatostatin - analysis
Synaptic Transmission - physiology
Synaptic Transmission - radiation effects
Vasoactive Intestinal Peptide - analysis
Visual cortex
Visual Cortex - physiology
title Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20inhibition%20in%20visual%20cortex:%20the%20logic%20of%20connections%20between%20molecularly%20distinct%20interneurons&rft.jtitle=Nature%20neuroscience&rft.au=Pfeffer,%20Carsten%20K&rft.date=2013-08-01&rft.volume=16&rft.issue=8&rft.spage=1068&rft.epage=1076&rft.pages=1068-1076&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3446&rft_dat=%3Cgale_pubme%3EA341556585%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412582966&rft_id=info:pmid/23817549&rft_galeid=A341556585&rfr_iscdi=true