Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons
Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2013-08, Vol.16 (8), p.1068-1076 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1076 |
---|---|
container_issue | 8 |
container_start_page | 1068 |
container_title | Nature neuroscience |
container_volume | 16 |
creator | Pfeffer, Carsten K Xue, Mingshan He, Miao Huang, Z Josh Scanziani, Massimo |
description | Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex.
Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons. |
doi_str_mv | 10.1038/nn.3446 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3729586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341556585</galeid><sourcerecordid>A341556585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</originalsourceid><addsrcrecordid>eNqNkktv1DAQxyMEog8Q3wBF4gAcsvgdmwNSVfFYqRISj7PldSZZV4ldbKfQb19HLd1uxQH54Mf85i_Pf6aqXmC0wojKd96vKGPiUXWIORMNbol4XM5ItY0gXBxURymdI4RaLtXT6oBQiVvO1GE1rf3WbVx2wdehr93u5nx96dJsxtqGmOHP-zpvoR7D4OxC2uA92IVM9QbybwBfT2EEO48mjld151J23uaikyF6mGMhn1VPejMmeH67H1c_P338cfqlOfv6eX16ctZYQVFuWsWIQZgAsbhrS2EGBBMS0w0I0jMkhaUYY0K7znDTW4WklAoZyTbAUdfR4-rDje7FvJmgs-BzNKO-iG4y8UoH4_R-xLutHsKlpi1RXIoi8OZWIIZfM6SsJ5csjKPxEOakMcOKCsUF-R-UYkEwUwV99QA9D3P0xYmFIlwSJcSOGswI2vk-lC_aRVSfUIY5F1zyQq3-QZXVweRKc6B35X0v4e1eQmFKV_Ng5pT0-vu3ffb1DWtjSClCf2cdRnoZOO29XgaukC_vO33H_Z2wnT2phPwA8V7ND7SuAUR93P0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412582966</pqid></control><display><type>article</type><title>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Pfeffer, Carsten K ; Xue, Mingshan ; He, Miao ; Huang, Z Josh ; Scanziani, Massimo</creator><creatorcontrib>Pfeffer, Carsten K ; Xue, Mingshan ; He, Miao ; Huang, Z Josh ; Scanziani, Massimo</creatorcontrib><description>Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex.
Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn.3446</identifier><identifier>PMID: 23817549</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1697/1691 ; 631/378/2613 ; 631/378/340 ; Animal Genetics and Genomics ; Animals ; Antibodies ; Behavioral Sciences ; Biological Techniques ; Biomarkers ; Biomedicine ; Channelrhodopsins ; Female ; Genes, Reporter ; Inhibitory Postsynaptic Potentials - radiation effects ; Interneurons ; Interneurons - chemistry ; Interneurons - classification ; Interneurons - physiology ; Laboratories ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Morphology ; Nerve Tissue Proteins - analysis ; Neural Inhibition - physiology ; Neurobiology ; Neurophysiology ; Neurosciences ; Optogenetics ; Organophosphorus Compounds - pharmacology ; Parvalbumins - analysis ; Patch-Clamp Techniques ; Photic Stimulation ; Physiological aspects ; Principal Component Analysis ; Pyramidal Cells - physiology ; Quinoxalines - pharmacology ; Recombinant Fusion Proteins - physiology ; Somatostatin - analysis ; Synaptic Transmission - physiology ; Synaptic Transmission - radiation effects ; Vasoactive Intestinal Peptide - analysis ; Visual cortex ; Visual Cortex - physiology</subject><ispartof>Nature neuroscience, 2013-08, Vol.16 (8), p.1068-1076</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</citedby><cites>FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn.3446$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn.3446$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23817549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pfeffer, Carsten K</creatorcontrib><creatorcontrib>Xue, Mingshan</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Huang, Z Josh</creatorcontrib><creatorcontrib>Scanziani, Massimo</creatorcontrib><title>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex.
Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.</description><subject>631/378/1697/1691</subject><subject>631/378/2613</subject><subject>631/378/340</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomarkers</subject><subject>Biomedicine</subject><subject>Channelrhodopsins</subject><subject>Female</subject><subject>Genes, Reporter</subject><subject>Inhibitory Postsynaptic Potentials - radiation effects</subject><subject>Interneurons</subject><subject>Interneurons - chemistry</subject><subject>Interneurons - classification</subject><subject>Interneurons - physiology</subject><subject>Laboratories</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Morphology</subject><subject>Nerve Tissue Proteins - analysis</subject><subject>Neural Inhibition - physiology</subject><subject>Neurobiology</subject><subject>Neurophysiology</subject><subject>Neurosciences</subject><subject>Optogenetics</subject><subject>Organophosphorus Compounds - pharmacology</subject><subject>Parvalbumins - analysis</subject><subject>Patch-Clamp Techniques</subject><subject>Photic Stimulation</subject><subject>Physiological aspects</subject><subject>Principal Component Analysis</subject><subject>Pyramidal Cells - physiology</subject><subject>Quinoxalines - pharmacology</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Somatostatin - analysis</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptic Transmission - radiation effects</subject><subject>Vasoactive Intestinal Peptide - analysis</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1DAQxyMEog8Q3wBF4gAcsvgdmwNSVfFYqRISj7PldSZZV4ldbKfQb19HLd1uxQH54Mf85i_Pf6aqXmC0wojKd96vKGPiUXWIORMNbol4XM5ItY0gXBxURymdI4RaLtXT6oBQiVvO1GE1rf3WbVx2wdehr93u5nx96dJsxtqGmOHP-zpvoR7D4OxC2uA92IVM9QbybwBfT2EEO48mjld151J23uaikyF6mGMhn1VPejMmeH67H1c_P338cfqlOfv6eX16ctZYQVFuWsWIQZgAsbhrS2EGBBMS0w0I0jMkhaUYY0K7znDTW4WklAoZyTbAUdfR4-rDje7FvJmgs-BzNKO-iG4y8UoH4_R-xLutHsKlpi1RXIoi8OZWIIZfM6SsJ5csjKPxEOakMcOKCsUF-R-UYkEwUwV99QA9D3P0xYmFIlwSJcSOGswI2vk-lC_aRVSfUIY5F1zyQq3-QZXVweRKc6B35X0v4e1eQmFKV_Ng5pT0-vu3ffb1DWtjSClCf2cdRnoZOO29XgaukC_vO33H_Z2wnT2phPwA8V7ND7SuAUR93P0</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Pfeffer, Carsten K</creator><creator>Xue, Mingshan</creator><creator>He, Miao</creator><creator>Huang, Z Josh</creator><creator>Scanziani, Massimo</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</title><author>Pfeffer, Carsten K ; Xue, Mingshan ; He, Miao ; Huang, Z Josh ; Scanziani, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-7942a012e2c1d7344ae646813be62f4086c311123dda5afc9088890a84be50dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/378/1697/1691</topic><topic>631/378/2613</topic><topic>631/378/340</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomarkers</topic><topic>Biomedicine</topic><topic>Channelrhodopsins</topic><topic>Female</topic><topic>Genes, Reporter</topic><topic>Inhibitory Postsynaptic Potentials - radiation effects</topic><topic>Interneurons</topic><topic>Interneurons - chemistry</topic><topic>Interneurons - classification</topic><topic>Interneurons - physiology</topic><topic>Laboratories</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Morphology</topic><topic>Nerve Tissue Proteins - analysis</topic><topic>Neural Inhibition - physiology</topic><topic>Neurobiology</topic><topic>Neurophysiology</topic><topic>Neurosciences</topic><topic>Optogenetics</topic><topic>Organophosphorus Compounds - pharmacology</topic><topic>Parvalbumins - analysis</topic><topic>Patch-Clamp Techniques</topic><topic>Photic Stimulation</topic><topic>Physiological aspects</topic><topic>Principal Component Analysis</topic><topic>Pyramidal Cells - physiology</topic><topic>Quinoxalines - pharmacology</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Somatostatin - analysis</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptic Transmission - radiation effects</topic><topic>Vasoactive Intestinal Peptide - analysis</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfeffer, Carsten K</creatorcontrib><creatorcontrib>Xue, Mingshan</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Huang, Z Josh</creatorcontrib><creatorcontrib>Scanziani, Massimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfeffer, Carsten K</au><au>Xue, Mingshan</au><au>He, Miao</au><au>Huang, Z Josh</au><au>Scanziani, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>16</volume><issue>8</issue><spage>1068</spage><epage>1076</epage><pages>1068-1076</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Using a combination of optogenetics, single-cell molecular profiling and paired electrophysiological recordings in the mouse visual cortex, Pfeffer and colleagues derived the connectivity matrix of three major classes of interneurons with their post-synaptic GABAergic targets. This study provides a comprehensive overview of the wiring rules of the inhibition of inhibition in the cortex.
Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23817549</pmid><doi>10.1038/nn.3446</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2013-08, Vol.16 (8), p.1068-1076 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3729586 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/378/1697/1691 631/378/2613 631/378/340 Animal Genetics and Genomics Animals Antibodies Behavioral Sciences Biological Techniques Biomarkers Biomedicine Channelrhodopsins Female Genes, Reporter Inhibitory Postsynaptic Potentials - radiation effects Interneurons Interneurons - chemistry Interneurons - classification Interneurons - physiology Laboratories Male Mice Mice, Inbred C57BL Mice, Transgenic Morphology Nerve Tissue Proteins - analysis Neural Inhibition - physiology Neurobiology Neurophysiology Neurosciences Optogenetics Organophosphorus Compounds - pharmacology Parvalbumins - analysis Patch-Clamp Techniques Photic Stimulation Physiological aspects Principal Component Analysis Pyramidal Cells - physiology Quinoxalines - pharmacology Recombinant Fusion Proteins - physiology Somatostatin - analysis Synaptic Transmission - physiology Synaptic Transmission - radiation effects Vasoactive Intestinal Peptide - analysis Visual cortex Visual Cortex - physiology |
title | Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20inhibition%20in%20visual%20cortex:%20the%20logic%20of%20connections%20between%20molecularly%20distinct%20interneurons&rft.jtitle=Nature%20neuroscience&rft.au=Pfeffer,%20Carsten%20K&rft.date=2013-08-01&rft.volume=16&rft.issue=8&rft.spage=1068&rft.epage=1076&rft.pages=1068-1076&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn.3446&rft_dat=%3Cgale_pubme%3EA341556585%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412582966&rft_id=info:pmid/23817549&rft_galeid=A341556585&rfr_iscdi=true |