A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition

Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2013-07, Vol.18 (1), p.99-105
Hauptverfasser: Wan, Min, Leavens, Karla F., Hunter, Roger W., Koren, Shlomit, von Wilamowitz-Moellendorff, Alexander, Lu, Mingjian, Satapati, Santhosh, Chu, Qingwei, Sakamoto, Kei, Burgess, Shawn C., Birnbaum, Morris J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 99
container_title Cell metabolism
container_volume 18
creator Wan, Min
Leavens, Karla F.
Hunter, Roger W.
Koren, Shlomit
von Wilamowitz-Moellendorff, Alexander
Lu, Mingjian
Satapati, Santhosh
Chu, Qingwei
Sakamoto, Kei
Burgess, Shawn C.
Birnbaum, Morris J.
description Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogenolysis in the perfused mouse liver, elevated hepatic glucose production during a euglycemic-hyperinsulinemic clamp, or diminished glycogen accumulation during clamp or refeeding in mice without hepatic Akt2. Surprisingly, the absence of Akt2 disrupted glycogen metabolism independent of GSK3α and GSK3β phosphorylation, which is thought to be an essential step in the pathway by which insulin regulates glycogen synthesis through Akt. These data show that (1) the immediate action of insulin to suppress hepatic glucose production functions via an Akt2-dependent redirection of glucose-6-phosphate to glycogen, and (2) insulin increases glucose phosphorylation and conversion to glycogen independent of GSK3. •Deletion of Akt2 in mouse liver leads to hepatic insulin resistance•Akt2 is required for the acute insulin effect on hepatic glycogen metabolism•The regulation is independent of GSK3α and GSK3β phosphorylation
doi_str_mv 10.1016/j.cmet.2013.06.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3725134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413113002441</els_id><sourcerecordid>1398422766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-d0b1ce59cfc99961f699a04e713f3b062c920094dac7cd01035fa479975b27183</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiNERT_gD3BAc-TATJ2PyWwkhFQtsK1aQSXgwiXKZjxtVrPJNMkW7b9vVlsquPRiW_Lr15YfQt5SaChQebpq7Bpzw4DyBmQDQF-QI6o4qzvB4GWp2xZqQTk9JMcprQC45Iq_IoeMzxgXMzgiv8-qb8Fb44N31owfqsWPS15f-B4nLMHn6trk2z9mW82DzzGMqboOKU_R-N6ZsTrHyWRnq8W4teEGffUZp5BcdsG_JgeDGRO-ecwn5NfXLz_n5_XV98XF_OyqtqJtc93DklpslR2sUkrSQSplQGBH-cCXIJlVDECJ3tjO9kCBt4MRnVJdu2QdnfET8mnvO22Wa-xtOTqaUU_RrU3c6mCc_r_j3a2-Cfead6ylXBSD948GMdxtMGW9dsniOBqPYZM05WomGOukLFK2l9oYUoo4PK2hoHdQ9ErvoOgdFA1SFyhl6N2_Bz6N_KVQBB_3AixvuncYdbIOvcXeRbRZ98E95_8A0syeiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398422766</pqid></control><display><type>article</type><title>A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wan, Min ; Leavens, Karla F. ; Hunter, Roger W. ; Koren, Shlomit ; von Wilamowitz-Moellendorff, Alexander ; Lu, Mingjian ; Satapati, Santhosh ; Chu, Qingwei ; Sakamoto, Kei ; Burgess, Shawn C. ; Birnbaum, Morris J.</creator><creatorcontrib>Wan, Min ; Leavens, Karla F. ; Hunter, Roger W. ; Koren, Shlomit ; von Wilamowitz-Moellendorff, Alexander ; Lu, Mingjian ; Satapati, Santhosh ; Chu, Qingwei ; Sakamoto, Kei ; Burgess, Shawn C. ; Birnbaum, Morris J.</creatorcontrib><description>Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogenolysis in the perfused mouse liver, elevated hepatic glucose production during a euglycemic-hyperinsulinemic clamp, or diminished glycogen accumulation during clamp or refeeding in mice without hepatic Akt2. Surprisingly, the absence of Akt2 disrupted glycogen metabolism independent of GSK3α and GSK3β phosphorylation, which is thought to be an essential step in the pathway by which insulin regulates glycogen synthesis through Akt. These data show that (1) the immediate action of insulin to suppress hepatic glucose production functions via an Akt2-dependent redirection of glucose-6-phosphate to glycogen, and (2) insulin increases glucose phosphorylation and conversion to glycogen independent of GSK3. •Deletion of Akt2 in mouse liver leads to hepatic insulin resistance•Akt2 is required for the acute insulin effect on hepatic glycogen metabolism•The regulation is independent of GSK3α and GSK3β phosphorylation</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2013.06.001</identifier><identifier>PMID: 23823480</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Disease Models, Animal ; Glucose Clamp Technique ; Glucose-6-Phosphate - metabolism ; Glycogen - metabolism ; Glycogen Synthase Kinase 3 - physiology ; Glycogenolysis - physiology ; Hyperinsulinism - metabolism ; Hyperinsulinism - physiopathology ; Insulin - metabolism ; Liver - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Postprandial Period - physiology ; Proto-Oncogene Proteins c-akt - deficiency ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction - physiology</subject><ispartof>Cell metabolism, 2013-07, Vol.18 (1), p.99-105</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-d0b1ce59cfc99961f699a04e713f3b062c920094dac7cd01035fa479975b27183</citedby><cites>FETCH-LOGICAL-c455t-d0b1ce59cfc99961f699a04e713f3b062c920094dac7cd01035fa479975b27183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1550413113002441$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23823480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Min</creatorcontrib><creatorcontrib>Leavens, Karla F.</creatorcontrib><creatorcontrib>Hunter, Roger W.</creatorcontrib><creatorcontrib>Koren, Shlomit</creatorcontrib><creatorcontrib>von Wilamowitz-Moellendorff, Alexander</creatorcontrib><creatorcontrib>Lu, Mingjian</creatorcontrib><creatorcontrib>Satapati, Santhosh</creatorcontrib><creatorcontrib>Chu, Qingwei</creatorcontrib><creatorcontrib>Sakamoto, Kei</creatorcontrib><creatorcontrib>Burgess, Shawn C.</creatorcontrib><creatorcontrib>Birnbaum, Morris J.</creatorcontrib><title>A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogenolysis in the perfused mouse liver, elevated hepatic glucose production during a euglycemic-hyperinsulinemic clamp, or diminished glycogen accumulation during clamp or refeeding in mice without hepatic Akt2. Surprisingly, the absence of Akt2 disrupted glycogen metabolism independent of GSK3α and GSK3β phosphorylation, which is thought to be an essential step in the pathway by which insulin regulates glycogen synthesis through Akt. These data show that (1) the immediate action of insulin to suppress hepatic glucose production functions via an Akt2-dependent redirection of glucose-6-phosphate to glycogen, and (2) insulin increases glucose phosphorylation and conversion to glycogen independent of GSK3. •Deletion of Akt2 in mouse liver leads to hepatic insulin resistance•Akt2 is required for the acute insulin effect on hepatic glycogen metabolism•The regulation is independent of GSK3α and GSK3β phosphorylation</description><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Glucose Clamp Technique</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Glycogen - metabolism</subject><subject>Glycogen Synthase Kinase 3 - physiology</subject><subject>Glycogenolysis - physiology</subject><subject>Hyperinsulinism - metabolism</subject><subject>Hyperinsulinism - physiopathology</subject><subject>Insulin - metabolism</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Postprandial Period - physiology</subject><subject>Proto-Oncogene Proteins c-akt - deficiency</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction - physiology</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1vFDEMhiNERT_gD3BAc-TATJ2PyWwkhFQtsK1aQSXgwiXKZjxtVrPJNMkW7b9vVlsquPRiW_Lr15YfQt5SaChQebpq7Bpzw4DyBmQDQF-QI6o4qzvB4GWp2xZqQTk9JMcprQC45Iq_IoeMzxgXMzgiv8-qb8Fb44N31owfqsWPS15f-B4nLMHn6trk2z9mW82DzzGMqboOKU_R-N6ZsTrHyWRnq8W4teEGffUZp5BcdsG_JgeDGRO-ecwn5NfXLz_n5_XV98XF_OyqtqJtc93DklpslR2sUkrSQSplQGBH-cCXIJlVDECJ3tjO9kCBt4MRnVJdu2QdnfET8mnvO22Wa-xtOTqaUU_RrU3c6mCc_r_j3a2-Cfead6ylXBSD948GMdxtMGW9dsniOBqPYZM05WomGOukLFK2l9oYUoo4PK2hoHdQ9ErvoOgdFA1SFyhl6N2_Bz6N_KVQBB_3AixvuncYdbIOvcXeRbRZ98E95_8A0syeiw</recordid><startdate>20130702</startdate><enddate>20130702</enddate><creator>Wan, Min</creator><creator>Leavens, Karla F.</creator><creator>Hunter, Roger W.</creator><creator>Koren, Shlomit</creator><creator>von Wilamowitz-Moellendorff, Alexander</creator><creator>Lu, Mingjian</creator><creator>Satapati, Santhosh</creator><creator>Chu, Qingwei</creator><creator>Sakamoto, Kei</creator><creator>Burgess, Shawn C.</creator><creator>Birnbaum, Morris J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130702</creationdate><title>A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition</title><author>Wan, Min ; Leavens, Karla F. ; Hunter, Roger W. ; Koren, Shlomit ; von Wilamowitz-Moellendorff, Alexander ; Lu, Mingjian ; Satapati, Santhosh ; Chu, Qingwei ; Sakamoto, Kei ; Burgess, Shawn C. ; Birnbaum, Morris J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-d0b1ce59cfc99961f699a04e713f3b062c920094dac7cd01035fa479975b27183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Glucose Clamp Technique</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Glycogen - metabolism</topic><topic>Glycogen Synthase Kinase 3 - physiology</topic><topic>Glycogenolysis - physiology</topic><topic>Hyperinsulinism - metabolism</topic><topic>Hyperinsulinism - physiopathology</topic><topic>Insulin - metabolism</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Postprandial Period - physiology</topic><topic>Proto-Oncogene Proteins c-akt - deficiency</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Min</creatorcontrib><creatorcontrib>Leavens, Karla F.</creatorcontrib><creatorcontrib>Hunter, Roger W.</creatorcontrib><creatorcontrib>Koren, Shlomit</creatorcontrib><creatorcontrib>von Wilamowitz-Moellendorff, Alexander</creatorcontrib><creatorcontrib>Lu, Mingjian</creatorcontrib><creatorcontrib>Satapati, Santhosh</creatorcontrib><creatorcontrib>Chu, Qingwei</creatorcontrib><creatorcontrib>Sakamoto, Kei</creatorcontrib><creatorcontrib>Burgess, Shawn C.</creatorcontrib><creatorcontrib>Birnbaum, Morris J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Min</au><au>Leavens, Karla F.</au><au>Hunter, Roger W.</au><au>Koren, Shlomit</au><au>von Wilamowitz-Moellendorff, Alexander</au><au>Lu, Mingjian</au><au>Satapati, Santhosh</au><au>Chu, Qingwei</au><au>Sakamoto, Kei</au><au>Burgess, Shawn C.</au><au>Birnbaum, Morris J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2013-07-02</date><risdate>2013</risdate><volume>18</volume><issue>1</issue><spage>99</spage><epage>105</epage><pages>99-105</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogenolysis in the perfused mouse liver, elevated hepatic glucose production during a euglycemic-hyperinsulinemic clamp, or diminished glycogen accumulation during clamp or refeeding in mice without hepatic Akt2. Surprisingly, the absence of Akt2 disrupted glycogen metabolism independent of GSK3α and GSK3β phosphorylation, which is thought to be an essential step in the pathway by which insulin regulates glycogen synthesis through Akt. These data show that (1) the immediate action of insulin to suppress hepatic glucose production functions via an Akt2-dependent redirection of glucose-6-phosphate to glycogen, and (2) insulin increases glucose phosphorylation and conversion to glycogen independent of GSK3. •Deletion of Akt2 in mouse liver leads to hepatic insulin resistance•Akt2 is required for the acute insulin effect on hepatic glycogen metabolism•The regulation is independent of GSK3α and GSK3β phosphorylation</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23823480</pmid><doi>10.1016/j.cmet.2013.06.001</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2013-07, Vol.18 (1), p.99-105
issn 1550-4131
1932-7420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3725134
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Disease Models, Animal
Glucose Clamp Technique
Glucose-6-Phosphate - metabolism
Glycogen - metabolism
Glycogen Synthase Kinase 3 - physiology
Glycogenolysis - physiology
Hyperinsulinism - metabolism
Hyperinsulinism - physiopathology
Insulin - metabolism
Liver - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Postprandial Period - physiology
Proto-Oncogene Proteins c-akt - deficiency
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Signal Transduction - physiology
title A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Noncanonical,%20GSK3-Independent%20Pathway%20Controls%20Postprandial%20Hepatic%20Glycogen%20Deposition&rft.jtitle=Cell%20metabolism&rft.au=Wan,%20Min&rft.date=2013-07-02&rft.volume=18&rft.issue=1&rft.spage=99&rft.epage=105&rft.pages=99-105&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2013.06.001&rft_dat=%3Cproquest_pubme%3E1398422766%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398422766&rft_id=info:pmid/23823480&rft_els_id=S1550413113002441&rfr_iscdi=true