DNA replication timing

Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cold Spring Harbor perspectives in biology 2013-08, Vol.5 (8), p.a010132-a010132
Hauptverfasser: Rhind, Nicholas, Gilbert, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page a010132
container_issue 8
container_start_page a010132
container_title Cold Spring Harbor perspectives in biology
container_volume 5
creator Rhind, Nicholas
Gilbert, David M
description Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
doi_str_mv 10.1101/cshperspect.a010132
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3721284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417532296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-31f702580e95eceeb7c8d98628587faf512a5fc3adcf7da0cb872fa0f9d377063</originalsourceid><addsrcrecordid>eNpVkMtLAzEQxoMotlavXgTp0cvWyWM32YtQ6hOKXvQc0uykjezLZCv437ultdTTDDPzfd_wI-SKwoRSoLc2rloMsUXbTQz0E86OyJDmgifAMnF80A_IWYyfAFmWq-yUDBhXXAkBQ3J5_zodB2xLb03nm3rc-crXy3Ny4kwZ8WJXR-Tj8eF99pzM355eZtN5YgWkXcKpk8BSBZinaBEX0qqij2AqVdIZl1JmUme5KayThQG7UJI5Ay4vuJSQ8RG52_q260WFhcW6C6bUbfCVCT-6MV7_39R-pZfNt-aSUaZEb3CzMwjN1xpjpysfLZalqbFZR00FlSlnLN9k8e2pDU2MAd0-hoLeENUHRPWOaK-6Pvxwr_lDyH8B4hB1Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417532296</pqid></control><display><type>article</type><title>DNA replication timing</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rhind, Nicholas ; Gilbert, David M</creator><creatorcontrib>Rhind, Nicholas ; Gilbert, David M</creatorcontrib><description>Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.</description><identifier>ISSN: 1943-0264</identifier><identifier>EISSN: 1943-0264</identifier><identifier>DOI: 10.1101/cshperspect.a010132</identifier><identifier>PMID: 23838440</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Chromatin - genetics ; Chromosomes - genetics ; Chromosomes - ultrastructure ; Computational Biology - methods ; Computational Biology - trends ; DNA Replication Timing - physiology ; Eukaryota - genetics ; Evolution, Molecular ; Gene Expression Regulation - genetics ; Genome - genetics ; Models, Genetic ; Species Specificity</subject><ispartof>Cold Spring Harbor perspectives in biology, 2013-08, Vol.5 (8), p.a010132-a010132</ispartof><rights>Copyright © 2013 Cold Spring Harbor Laboratory Press; all rights reserved 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-31f702580e95eceeb7c8d98628587faf512a5fc3adcf7da0cb872fa0f9d377063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721284/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721284/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23838440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhind, Nicholas</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><title>DNA replication timing</title><title>Cold Spring Harbor perspectives in biology</title><addtitle>Cold Spring Harb Perspect Biol</addtitle><description>Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.</description><subject>Chromatin - genetics</subject><subject>Chromosomes - genetics</subject><subject>Chromosomes - ultrastructure</subject><subject>Computational Biology - methods</subject><subject>Computational Biology - trends</subject><subject>DNA Replication Timing - physiology</subject><subject>Eukaryota - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genome - genetics</subject><subject>Models, Genetic</subject><subject>Species Specificity</subject><issn>1943-0264</issn><issn>1943-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtLAzEQxoMotlavXgTp0cvWyWM32YtQ6hOKXvQc0uykjezLZCv437ultdTTDDPzfd_wI-SKwoRSoLc2rloMsUXbTQz0E86OyJDmgifAMnF80A_IWYyfAFmWq-yUDBhXXAkBQ3J5_zodB2xLb03nm3rc-crXy3Ny4kwZ8WJXR-Tj8eF99pzM355eZtN5YgWkXcKpk8BSBZinaBEX0qqij2AqVdIZl1JmUme5KayThQG7UJI5Ay4vuJSQ8RG52_q260WFhcW6C6bUbfCVCT-6MV7_39R-pZfNt-aSUaZEb3CzMwjN1xpjpysfLZalqbFZR00FlSlnLN9k8e2pDU2MAd0-hoLeENUHRPWOaK-6Pvxwr_lDyH8B4hB1Qw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Rhind, Nicholas</creator><creator>Gilbert, David M</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>DNA replication timing</title><author>Rhind, Nicholas ; Gilbert, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-31f702580e95eceeb7c8d98628587faf512a5fc3adcf7da0cb872fa0f9d377063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chromatin - genetics</topic><topic>Chromosomes - genetics</topic><topic>Chromosomes - ultrastructure</topic><topic>Computational Biology - methods</topic><topic>Computational Biology - trends</topic><topic>DNA Replication Timing - physiology</topic><topic>Eukaryota - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genome - genetics</topic><topic>Models, Genetic</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhind, Nicholas</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cold Spring Harbor perspectives in biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhind, Nicholas</au><au>Gilbert, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA replication timing</atitle><jtitle>Cold Spring Harbor perspectives in biology</jtitle><addtitle>Cold Spring Harb Perspect Biol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>5</volume><issue>8</issue><spage>a010132</spage><epage>a010132</epage><pages>a010132-a010132</pages><issn>1943-0264</issn><eissn>1943-0264</eissn><abstract>Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>23838440</pmid><doi>10.1101/cshperspect.a010132</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0264
ispartof Cold Spring Harbor perspectives in biology, 2013-08, Vol.5 (8), p.a010132-a010132
issn 1943-0264
1943-0264
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3721284
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chromatin - genetics
Chromosomes - genetics
Chromosomes - ultrastructure
Computational Biology - methods
Computational Biology - trends
DNA Replication Timing - physiology
Eukaryota - genetics
Evolution, Molecular
Gene Expression Regulation - genetics
Genome - genetics
Models, Genetic
Species Specificity
title DNA replication timing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20replication%20timing&rft.jtitle=Cold%20Spring%20Harbor%20perspectives%20in%20biology&rft.au=Rhind,%20Nicholas&rft.date=2013-08-01&rft.volume=5&rft.issue=8&rft.spage=a010132&rft.epage=a010132&rft.pages=a010132-a010132&rft.issn=1943-0264&rft.eissn=1943-0264&rft_id=info:doi/10.1101/cshperspect.a010132&rft_dat=%3Cproquest_pubme%3E1417532296%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417532296&rft_id=info:pmid/23838440&rfr_iscdi=true