DNA replication timing
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these la...
Gespeichert in:
Veröffentlicht in: | Cold Spring Harbor perspectives in biology 2013-08, Vol.5 (8), p.a010132-a010132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | a010132 |
---|---|
container_issue | 8 |
container_start_page | a010132 |
container_title | Cold Spring Harbor perspectives in biology |
container_volume | 5 |
creator | Rhind, Nicholas Gilbert, David M |
description | Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question. |
doi_str_mv | 10.1101/cshperspect.a010132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3721284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417532296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-31f702580e95eceeb7c8d98628587faf512a5fc3adcf7da0cb872fa0f9d377063</originalsourceid><addsrcrecordid>eNpVkMtLAzEQxoMotlavXgTp0cvWyWM32YtQ6hOKXvQc0uykjezLZCv437ultdTTDDPzfd_wI-SKwoRSoLc2rloMsUXbTQz0E86OyJDmgifAMnF80A_IWYyfAFmWq-yUDBhXXAkBQ3J5_zodB2xLb03nm3rc-crXy3Ny4kwZ8WJXR-Tj8eF99pzM355eZtN5YgWkXcKpk8BSBZinaBEX0qqij2AqVdIZl1JmUme5KayThQG7UJI5Ay4vuJSQ8RG52_q260WFhcW6C6bUbfCVCT-6MV7_39R-pZfNt-aSUaZEb3CzMwjN1xpjpysfLZalqbFZR00FlSlnLN9k8e2pDU2MAd0-hoLeENUHRPWOaK-6Pvxwr_lDyH8B4hB1Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417532296</pqid></control><display><type>article</type><title>DNA replication timing</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rhind, Nicholas ; Gilbert, David M</creator><creatorcontrib>Rhind, Nicholas ; Gilbert, David M</creatorcontrib><description>Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.</description><identifier>ISSN: 1943-0264</identifier><identifier>EISSN: 1943-0264</identifier><identifier>DOI: 10.1101/cshperspect.a010132</identifier><identifier>PMID: 23838440</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Chromatin - genetics ; Chromosomes - genetics ; Chromosomes - ultrastructure ; Computational Biology - methods ; Computational Biology - trends ; DNA Replication Timing - physiology ; Eukaryota - genetics ; Evolution, Molecular ; Gene Expression Regulation - genetics ; Genome - genetics ; Models, Genetic ; Species Specificity</subject><ispartof>Cold Spring Harbor perspectives in biology, 2013-08, Vol.5 (8), p.a010132-a010132</ispartof><rights>Copyright © 2013 Cold Spring Harbor Laboratory Press; all rights reserved 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-31f702580e95eceeb7c8d98628587faf512a5fc3adcf7da0cb872fa0f9d377063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721284/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721284/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23838440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhind, Nicholas</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><title>DNA replication timing</title><title>Cold Spring Harbor perspectives in biology</title><addtitle>Cold Spring Harb Perspect Biol</addtitle><description>Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.</description><subject>Chromatin - genetics</subject><subject>Chromosomes - genetics</subject><subject>Chromosomes - ultrastructure</subject><subject>Computational Biology - methods</subject><subject>Computational Biology - trends</subject><subject>DNA Replication Timing - physiology</subject><subject>Eukaryota - genetics</subject><subject>Evolution, Molecular</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genome - genetics</subject><subject>Models, Genetic</subject><subject>Species Specificity</subject><issn>1943-0264</issn><issn>1943-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtLAzEQxoMotlavXgTp0cvWyWM32YtQ6hOKXvQc0uykjezLZCv437ultdTTDDPzfd_wI-SKwoRSoLc2rloMsUXbTQz0E86OyJDmgifAMnF80A_IWYyfAFmWq-yUDBhXXAkBQ3J5_zodB2xLb03nm3rc-crXy3Ny4kwZ8WJXR-Tj8eF99pzM355eZtN5YgWkXcKpk8BSBZinaBEX0qqij2AqVdIZl1JmUme5KayThQG7UJI5Ay4vuJSQ8RG52_q260WFhcW6C6bUbfCVCT-6MV7_39R-pZfNt-aSUaZEb3CzMwjN1xpjpysfLZalqbFZR00FlSlnLN9k8e2pDU2MAd0-hoLeENUHRPWOaK-6Pvxwr_lDyH8B4hB1Qw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Rhind, Nicholas</creator><creator>Gilbert, David M</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>DNA replication timing</title><author>Rhind, Nicholas ; Gilbert, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-31f702580e95eceeb7c8d98628587faf512a5fc3adcf7da0cb872fa0f9d377063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chromatin - genetics</topic><topic>Chromosomes - genetics</topic><topic>Chromosomes - ultrastructure</topic><topic>Computational Biology - methods</topic><topic>Computational Biology - trends</topic><topic>DNA Replication Timing - physiology</topic><topic>Eukaryota - genetics</topic><topic>Evolution, Molecular</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genome - genetics</topic><topic>Models, Genetic</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhind, Nicholas</creatorcontrib><creatorcontrib>Gilbert, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cold Spring Harbor perspectives in biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhind, Nicholas</au><au>Gilbert, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA replication timing</atitle><jtitle>Cold Spring Harbor perspectives in biology</jtitle><addtitle>Cold Spring Harb Perspect Biol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>5</volume><issue>8</issue><spage>a010132</spage><epage>a010132</epage><pages>a010132-a010132</pages><issn>1943-0264</issn><eissn>1943-0264</eissn><abstract>Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>23838440</pmid><doi>10.1101/cshperspect.a010132</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0264 |
ispartof | Cold Spring Harbor perspectives in biology, 2013-08, Vol.5 (8), p.a010132-a010132 |
issn | 1943-0264 1943-0264 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3721284 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chromatin - genetics Chromosomes - genetics Chromosomes - ultrastructure Computational Biology - methods Computational Biology - trends DNA Replication Timing - physiology Eukaryota - genetics Evolution, Molecular Gene Expression Regulation - genetics Genome - genetics Models, Genetic Species Specificity |
title | DNA replication timing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20replication%20timing&rft.jtitle=Cold%20Spring%20Harbor%20perspectives%20in%20biology&rft.au=Rhind,%20Nicholas&rft.date=2013-08-01&rft.volume=5&rft.issue=8&rft.spage=a010132&rft.epage=a010132&rft.pages=a010132-a010132&rft.issn=1943-0264&rft.eissn=1943-0264&rft_id=info:doi/10.1101/cshperspect.a010132&rft_dat=%3Cproquest_pubme%3E1417532296%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417532296&rft_id=info:pmid/23838440&rfr_iscdi=true |