A redox trap to augment the intein toolbox

The unregulated activity of inteins during expression and consequent side reactions during work‐up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism‐based approach to regulate intein autocatalysis for biotechnological application. The system, insp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2013-06, Vol.110 (6), p.1565-1573
Hauptverfasser: Callahan, Brian P., Stanger, Matthew, Belfort, Marlene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1573
container_issue 6
container_start_page 1565
container_title Biotechnology and bioengineering
container_volume 110
creator Callahan, Brian P.
Stanger, Matthew
Belfort, Marlene
description The unregulated activity of inteins during expression and consequent side reactions during work‐up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism‐based approach to regulate intein autocatalysis for biotechnological application. The system, inspired by our previous structural studies, is based on reversible trapping of the intein's catalytic cysteine residue through a disulfide bond. Using standard mutagenesis, the disulfide trap can be implemented to impart redox control over different inteins and for a variety of applications both in vitro and in Escherichia coli. Thereby, we first enhanced the output for bioconjugation in intein‐mediated protein ligation, also referred to as expressed protein ligation, where precursor recovery and product yield were augmented fourfold to sixfold. Second, in bioseparation experiments, the redox trap boosted precursor recovery and product yield twofold. Finally, the disulfide‐trap intein technology stimulated development of a novel bacterial redox sensor. This sensor reliably identified hyperoxic E. coli harboring mutations that disrupt the reductive pathways for thioredoxin and glutathione, against a background of wild‐type cells. Biotechnol. Bioeng. 2013; 110: 1565–1573. © 2012 Wiley Periodicals, Inc. Inteins, the protein splicing domains, can serve as powerful tools for protein biotechnology provided that their autocatalytic activity is controlled. Here a disulfide bond that reversibly immobilizes a catalytic intein residue is shown to improve yields from intein‐mediated protein ligation, and intein‐mediated bioseperation. Appending fluorescent proteins to the intein yields a new redox sensor.
doi_str_mv 10.1002/bit.24821
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3718494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2953307091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5141-a6437d42cea721957e850c36bf8a0d496d7d9d6979b9455f4ed15172ff394bf23</originalsourceid><addsrcrecordid>eNp1kUlPxCAYhonR6Lgc_AOmiRc16chOuZi4jlv04HYktKWKdsoIrY7_XnR0oiaeCPB8T154AVhFsI8gxNu5bfuYZhjNgB6CUqQQSzgLehBCnhIm8QJYDOExbkXG-TxYwARnkEHeA1u7iTelGyet16OkdYnu7oemaZP2wSS2aY1t4qmrczdeBnOVroNZ-VqXwM3R4fX-cXp-OTjZ3z1PC4YoSjWnRJQUF0YLjCQTJmOwIDyvMg1LKnkpSllyKWQuKWMVNSViSOCqIpLmFSZLYGfiHXX50JRFTON1rUbeDrV_U05b9fumsQ_q3r0oIlBGJY2CjS-Bd8-dCa0a2lCYutaNcV1QiBIKCUT4A13_gz66zjfxeQoRSjGhgotIbU6owrsQvKmmYRBUHw2o2ID6bCCyaz_TT8nvL4_A9gR4tbV5-9-k9k6uv5XpZMKG1oynE9o_qRhOMHV3MVCnt2e3-OrgVAnyDhG4nR0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344234767</pqid></control><display><type>article</type><title>A redox trap to augment the intein toolbox</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Callahan, Brian P. ; Stanger, Matthew ; Belfort, Marlene</creator><creatorcontrib>Callahan, Brian P. ; Stanger, Matthew ; Belfort, Marlene</creatorcontrib><description>The unregulated activity of inteins during expression and consequent side reactions during work‐up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism‐based approach to regulate intein autocatalysis for biotechnological application. The system, inspired by our previous structural studies, is based on reversible trapping of the intein's catalytic cysteine residue through a disulfide bond. Using standard mutagenesis, the disulfide trap can be implemented to impart redox control over different inteins and for a variety of applications both in vitro and in Escherichia coli. Thereby, we first enhanced the output for bioconjugation in intein‐mediated protein ligation, also referred to as expressed protein ligation, where precursor recovery and product yield were augmented fourfold to sixfold. Second, in bioseparation experiments, the redox trap boosted precursor recovery and product yield twofold. Finally, the disulfide‐trap intein technology stimulated development of a novel bacterial redox sensor. This sensor reliably identified hyperoxic E. coli harboring mutations that disrupt the reductive pathways for thioredoxin and glutathione, against a background of wild‐type cells. Biotechnol. Bioeng. 2013; 110: 1565–1573. © 2012 Wiley Periodicals, Inc. Inteins, the protein splicing domains, can serve as powerful tools for protein biotechnology provided that their autocatalytic activity is controlled. Here a disulfide bond that reversibly immobilizes a catalytic intein residue is shown to improve yields from intein‐mediated protein ligation, and intein‐mediated bioseperation. Appending fluorescent proteins to the intein yields a new redox sensor.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.24821</identifier><identifier>PMID: 23280506</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biosensing Techniques ; bioseparations ; Biotechnology ; Biotechnology - methods ; Cells ; Chromatography, Liquid ; DNA Polymerase III - genetics ; E coli ; Escherichia coli ; Escherichia coli - genetics ; expressed protein ligation ; Genetic Engineering - methods ; Inteins - genetics ; Mutagenesis ; Mutation ; Mutation - genetics ; Oxidation-Reduction ; Protein Splicing ; Proteins ; redox regulation ; redox sensor ; Ribonucleotide Reductases - genetics ; Ribonucleotide Reductases - metabolism</subject><ispartof>Biotechnology and bioengineering, 2013-06, Vol.110 (6), p.1565-1573</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jun 2013</rights><rights>2012 Wiley Periodicals, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5141-a6437d42cea721957e850c36bf8a0d496d7d9d6979b9455f4ed15172ff394bf23</citedby><cites>FETCH-LOGICAL-c5141-a6437d42cea721957e850c36bf8a0d496d7d9d6979b9455f4ed15172ff394bf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.24821$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.24821$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23280506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Callahan, Brian P.</creatorcontrib><creatorcontrib>Stanger, Matthew</creatorcontrib><creatorcontrib>Belfort, Marlene</creatorcontrib><title>A redox trap to augment the intein toolbox</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>The unregulated activity of inteins during expression and consequent side reactions during work‐up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism‐based approach to regulate intein autocatalysis for biotechnological application. The system, inspired by our previous structural studies, is based on reversible trapping of the intein's catalytic cysteine residue through a disulfide bond. Using standard mutagenesis, the disulfide trap can be implemented to impart redox control over different inteins and for a variety of applications both in vitro and in Escherichia coli. Thereby, we first enhanced the output for bioconjugation in intein‐mediated protein ligation, also referred to as expressed protein ligation, where precursor recovery and product yield were augmented fourfold to sixfold. Second, in bioseparation experiments, the redox trap boosted precursor recovery and product yield twofold. Finally, the disulfide‐trap intein technology stimulated development of a novel bacterial redox sensor. This sensor reliably identified hyperoxic E. coli harboring mutations that disrupt the reductive pathways for thioredoxin and glutathione, against a background of wild‐type cells. Biotechnol. Bioeng. 2013; 110: 1565–1573. © 2012 Wiley Periodicals, Inc. Inteins, the protein splicing domains, can serve as powerful tools for protein biotechnology provided that their autocatalytic activity is controlled. Here a disulfide bond that reversibly immobilizes a catalytic intein residue is shown to improve yields from intein‐mediated protein ligation, and intein‐mediated bioseperation. Appending fluorescent proteins to the intein yields a new redox sensor.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biosensing Techniques</subject><subject>bioseparations</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Cells</subject><subject>Chromatography, Liquid</subject><subject>DNA Polymerase III - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>expressed protein ligation</subject><subject>Genetic Engineering - methods</subject><subject>Inteins - genetics</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Oxidation-Reduction</subject><subject>Protein Splicing</subject><subject>Proteins</subject><subject>redox regulation</subject><subject>redox sensor</subject><subject>Ribonucleotide Reductases - genetics</subject><subject>Ribonucleotide Reductases - metabolism</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUlPxCAYhonR6Lgc_AOmiRc16chOuZi4jlv04HYktKWKdsoIrY7_XnR0oiaeCPB8T154AVhFsI8gxNu5bfuYZhjNgB6CUqQQSzgLehBCnhIm8QJYDOExbkXG-TxYwARnkEHeA1u7iTelGyet16OkdYnu7oemaZP2wSS2aY1t4qmrczdeBnOVroNZ-VqXwM3R4fX-cXp-OTjZ3z1PC4YoSjWnRJQUF0YLjCQTJmOwIDyvMg1LKnkpSllyKWQuKWMVNSViSOCqIpLmFSZLYGfiHXX50JRFTON1rUbeDrV_U05b9fumsQ_q3r0oIlBGJY2CjS-Bd8-dCa0a2lCYutaNcV1QiBIKCUT4A13_gz66zjfxeQoRSjGhgotIbU6owrsQvKmmYRBUHw2o2ID6bCCyaz_TT8nvL4_A9gR4tbV5-9-k9k6uv5XpZMKG1oynE9o_qRhOMHV3MVCnt2e3-OrgVAnyDhG4nR0</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Callahan, Brian P.</creator><creator>Stanger, Matthew</creator><creator>Belfort, Marlene</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201306</creationdate><title>A redox trap to augment the intein toolbox</title><author>Callahan, Brian P. ; Stanger, Matthew ; Belfort, Marlene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5141-a6437d42cea721957e850c36bf8a0d496d7d9d6979b9455f4ed15172ff394bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biosensing Techniques</topic><topic>bioseparations</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Cells</topic><topic>Chromatography, Liquid</topic><topic>DNA Polymerase III - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>expressed protein ligation</topic><topic>Genetic Engineering - methods</topic><topic>Inteins - genetics</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Oxidation-Reduction</topic><topic>Protein Splicing</topic><topic>Proteins</topic><topic>redox regulation</topic><topic>redox sensor</topic><topic>Ribonucleotide Reductases - genetics</topic><topic>Ribonucleotide Reductases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callahan, Brian P.</creatorcontrib><creatorcontrib>Stanger, Matthew</creatorcontrib><creatorcontrib>Belfort, Marlene</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callahan, Brian P.</au><au>Stanger, Matthew</au><au>Belfort, Marlene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A redox trap to augment the intein toolbox</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2013-06</date><risdate>2013</risdate><volume>110</volume><issue>6</issue><spage>1565</spage><epage>1573</epage><pages>1565-1573</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>The unregulated activity of inteins during expression and consequent side reactions during work‐up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism‐based approach to regulate intein autocatalysis for biotechnological application. The system, inspired by our previous structural studies, is based on reversible trapping of the intein's catalytic cysteine residue through a disulfide bond. Using standard mutagenesis, the disulfide trap can be implemented to impart redox control over different inteins and for a variety of applications both in vitro and in Escherichia coli. Thereby, we first enhanced the output for bioconjugation in intein‐mediated protein ligation, also referred to as expressed protein ligation, where precursor recovery and product yield were augmented fourfold to sixfold. Second, in bioseparation experiments, the redox trap boosted precursor recovery and product yield twofold. Finally, the disulfide‐trap intein technology stimulated development of a novel bacterial redox sensor. This sensor reliably identified hyperoxic E. coli harboring mutations that disrupt the reductive pathways for thioredoxin and glutathione, against a background of wild‐type cells. Biotechnol. Bioeng. 2013; 110: 1565–1573. © 2012 Wiley Periodicals, Inc. Inteins, the protein splicing domains, can serve as powerful tools for protein biotechnology provided that their autocatalytic activity is controlled. Here a disulfide bond that reversibly immobilizes a catalytic intein residue is shown to improve yields from intein‐mediated protein ligation, and intein‐mediated bioseperation. Appending fluorescent proteins to the intein yields a new redox sensor.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23280506</pmid><doi>10.1002/bit.24821</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2013-06, Vol.110 (6), p.1565-1573
issn 0006-3592
1097-0290
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3718494
source MEDLINE; Wiley Online Library All Journals
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biosensing Techniques
bioseparations
Biotechnology
Biotechnology - methods
Cells
Chromatography, Liquid
DNA Polymerase III - genetics
E coli
Escherichia coli
Escherichia coli - genetics
expressed protein ligation
Genetic Engineering - methods
Inteins - genetics
Mutagenesis
Mutation
Mutation - genetics
Oxidation-Reduction
Protein Splicing
Proteins
redox regulation
redox sensor
Ribonucleotide Reductases - genetics
Ribonucleotide Reductases - metabolism
title A redox trap to augment the intein toolbox
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20redox%20trap%20to%20augment%20the%20intein%20toolbox&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Callahan,%20Brian%20P.&rft.date=2013-06&rft.volume=110&rft.issue=6&rft.spage=1565&rft.epage=1573&rft.pages=1565-1573&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.24821&rft_dat=%3Cproquest_pubme%3E2953307091%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1344234767&rft_id=info:pmid/23280506&rfr_iscdi=true