Effects of Disturbed Flow on Endothelial Cells
Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. The shear stress resulting from blood flow modulates EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Shear stress with a clear direction resulting form pulsa...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2008-04, Vol.36 (4), p.554-562 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 562 |
---|---|
container_issue | 4 |
container_start_page | 554 |
container_title | Annals of biomedical engineering |
container_volume | 36 |
creator | Chien, Shu |
description | Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. The shear stress resulting from blood flow modulates EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Shear stress with a clear direction resulting form pulsatile or steady flow causes only transient activation of pro-inflammatory and proliferative pathways, which become down-regulated when such directed shearing is sustained. In contrast, shear flow without a definitive direction (e.g., disturbed flow in regions of complex geometry) causes sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to shear flows with a clear direction involve the remodeling of EC structure to maintain vascular homeostasis and are athero-protective. Such regulatory mechanism does not operate effectively when the flow pattern is disturbed. Therefore, the branch points and other regions of the arterial tree with a complex geometry are prone to atherogenesis, whereas the straight part of the arterial tree is generally spared. Understanding of the EC responses to different flow patters helps to elucidate the mechanism of the region-specific localization of atherosclerosis in the arterial system. |
doi_str_mv | 10.1007/s10439-007-9426-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3718045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897343941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-39198a8f4d197a5bdae1dd0e14067931dbd548b0ec7f11df1a7e47295c4ff7793</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhA3CBiENvaWdsx38uSGi7BaRKPUDPlhPb21TZuNgJiG-PV1lR6KE9eaT5vWfNe4S8RThFAHmWETjTdRlrzamo2TOywkayWgslnpMVgIZaaMGPyKucbwEQFWtekiNUKKkUckVONyH4bspVDNV5n6c5td5VF0P8VcWx2owuTjd-6O1Qrf0w5NfkRbBD9m8O7zG5vth8X3-pL68-f11_uqw7gXqqmUatrArcoZa2aZ316Bx45CCkZuha13DVgu9kQHQBrfRcUt10PARZiGPycfG9m9udd50fp2QHc5f6nU2_TbS9-X8z9jdmG38aJlEBb4rBycEgxR-zz5PZ9bkrJ9jRxzkbCbyEp9WTIKOMI4J4EqQgADmVBfzwALyNcxpLXIVRWtHSUIFwgboUc04-_L0NwezLNUu5Zj_uyzV7zbt_Q7lXHNosAF2AXFbj1qf7nx9zfb-Igo3GblOfzfU3CsgApZZCN-wP_rO3Ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208982573</pqid></control><display><type>article</type><title>Effects of Disturbed Flow on Endothelial Cells</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Chien, Shu</creator><creatorcontrib>Chien, Shu</creatorcontrib><description>Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. The shear stress resulting from blood flow modulates EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Shear stress with a clear direction resulting form pulsatile or steady flow causes only transient activation of pro-inflammatory and proliferative pathways, which become down-regulated when such directed shearing is sustained. In contrast, shear flow without a definitive direction (e.g., disturbed flow in regions of complex geometry) causes sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to shear flows with a clear direction involve the remodeling of EC structure to maintain vascular homeostasis and are athero-protective. Such regulatory mechanism does not operate effectively when the flow pattern is disturbed. Therefore, the branch points and other regions of the arterial tree with a complex geometry are prone to atherogenesis, whereas the straight part of the arterial tree is generally spared. Understanding of the EC responses to different flow patters helps to elucidate the mechanism of the region-specific localization of atherosclerosis in the arterial system.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-007-9426-3</identifier><identifier>PMID: 18172767</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Animals ; Biochemistry ; Biological and Medical Physics ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Blood Flow Velocity - physiology ; Blood Pressure - physiology ; Classical Mechanics ; Computer Simulation ; Endothelial Cells - physiology ; Humans ; Mechanotransduction, Cellular - physiology ; Models, Cardiovascular ; Shear Strength ; Shear stress</subject><ispartof>Annals of biomedical engineering, 2008-04, Vol.36 (4), p.554-562</ispartof><rights>Biomedical Engineering Society 2007</rights><rights>Biomedical Engineering Society 2008</rights><rights>2007 Biomedical Engineering Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c619t-39198a8f4d197a5bdae1dd0e14067931dbd548b0ec7f11df1a7e47295c4ff7793</citedby><cites>FETCH-LOGICAL-c619t-39198a8f4d197a5bdae1dd0e14067931dbd548b0ec7f11df1a7e47295c4ff7793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-007-9426-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-007-9426-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18172767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chien, Shu</creatorcontrib><title>Effects of Disturbed Flow on Endothelial Cells</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. The shear stress resulting from blood flow modulates EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Shear stress with a clear direction resulting form pulsatile or steady flow causes only transient activation of pro-inflammatory and proliferative pathways, which become down-regulated when such directed shearing is sustained. In contrast, shear flow without a definitive direction (e.g., disturbed flow in regions of complex geometry) causes sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to shear flows with a clear direction involve the remodeling of EC structure to maintain vascular homeostasis and are athero-protective. Such regulatory mechanism does not operate effectively when the flow pattern is disturbed. Therefore, the branch points and other regions of the arterial tree with a complex geometry are prone to atherogenesis, whereas the straight part of the arterial tree is generally spared. Understanding of the EC responses to different flow patters helps to elucidate the mechanism of the region-specific localization of atherosclerosis in the arterial system.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure - physiology</subject><subject>Classical Mechanics</subject><subject>Computer Simulation</subject><subject>Endothelial Cells - physiology</subject><subject>Humans</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Models, Cardiovascular</subject><subject>Shear Strength</subject><subject>Shear stress</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9v1DAQxS0EokvhA3CBiENvaWdsx38uSGi7BaRKPUDPlhPb21TZuNgJiG-PV1lR6KE9eaT5vWfNe4S8RThFAHmWETjTdRlrzamo2TOywkayWgslnpMVgIZaaMGPyKucbwEQFWtekiNUKKkUckVONyH4bspVDNV5n6c5td5VF0P8VcWx2owuTjd-6O1Qrf0w5NfkRbBD9m8O7zG5vth8X3-pL68-f11_uqw7gXqqmUatrArcoZa2aZ316Bx45CCkZuha13DVgu9kQHQBrfRcUt10PARZiGPycfG9m9udd50fp2QHc5f6nU2_TbS9-X8z9jdmG38aJlEBb4rBycEgxR-zz5PZ9bkrJ9jRxzkbCbyEp9WTIKOMI4J4EqQgADmVBfzwALyNcxpLXIVRWtHSUIFwgboUc04-_L0NwezLNUu5Zj_uyzV7zbt_Q7lXHNosAF2AXFbj1qf7nx9zfb-Igo3GblOfzfU3CsgApZZCN-wP_rO3Ag</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Chien, Shu</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080401</creationdate><title>Effects of Disturbed Flow on Endothelial Cells</title><author>Chien, Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-39198a8f4d197a5bdae1dd0e14067931dbd548b0ec7f11df1a7e47295c4ff7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure - physiology</topic><topic>Classical Mechanics</topic><topic>Computer Simulation</topic><topic>Endothelial Cells - physiology</topic><topic>Humans</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Models, Cardiovascular</topic><topic>Shear Strength</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chien, Shu</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chien, Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Disturbed Flow on Endothelial Cells</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>36</volume><issue>4</issue><spage>554</spage><epage>562</epage><pages>554-562</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. The shear stress resulting from blood flow modulates EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Shear stress with a clear direction resulting form pulsatile or steady flow causes only transient activation of pro-inflammatory and proliferative pathways, which become down-regulated when such directed shearing is sustained. In contrast, shear flow without a definitive direction (e.g., disturbed flow in regions of complex geometry) causes sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to shear flows with a clear direction involve the remodeling of EC structure to maintain vascular homeostasis and are athero-protective. Such regulatory mechanism does not operate effectively when the flow pattern is disturbed. Therefore, the branch points and other regions of the arterial tree with a complex geometry are prone to atherogenesis, whereas the straight part of the arterial tree is generally spared. Understanding of the EC responses to different flow patters helps to elucidate the mechanism of the region-specific localization of atherosclerosis in the arterial system.</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><pmid>18172767</pmid><doi>10.1007/s10439-007-9426-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2008-04, Vol.36 (4), p.554-562 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3718045 |
source | MEDLINE; SpringerNature Journals |
subjects | Animals Biochemistry Biological and Medical Physics Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Blood Flow Velocity - physiology Blood Pressure - physiology Classical Mechanics Computer Simulation Endothelial Cells - physiology Humans Mechanotransduction, Cellular - physiology Models, Cardiovascular Shear Strength Shear stress |
title | Effects of Disturbed Flow on Endothelial Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Disturbed%20Flow%20on%20Endothelial%20Cells&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Chien,%20Shu&rft.date=2008-04-01&rft.volume=36&rft.issue=4&rft.spage=554&rft.epage=562&rft.pages=554-562&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-007-9426-3&rft_dat=%3Cproquest_pubme%3E1897343941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208982573&rft_id=info:pmid/18172767&rfr_iscdi=true |