Prefrontal Cortical Kappa-Opioid Receptor Modulation of Local Neurotransmission and Conditioned Place Aversion

Kappa-opioid receptors (KORs) are important for motivation and other medial prefrontal cortex (mPFC)-dependent behaviors. Although KORs are present in the mPFC, their role in regulating transmission in this brain region and their contribution to KOR-mediated aversion are not known. Using in vivo mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2013-08, Vol.38 (9), p.1770-1779
Hauptverfasser: TEJEDA, Hugo A, COUNOTTE, Danielle S, OH, Eric, RAMAMOORTHY, Sammanda, SCHULTZ-KUSZAK, Kristin N, BÄCKMAN, Cristina M, CHEFER, Vladmir, O'DONNELL, Patricio, SHIPPENBERG, Toni S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1779
container_issue 9
container_start_page 1770
container_title Neuropsychopharmacology (New York, N.Y.)
container_volume 38
creator TEJEDA, Hugo A
COUNOTTE, Danielle S
OH, Eric
RAMAMOORTHY, Sammanda
SCHULTZ-KUSZAK, Kristin N
BÄCKMAN, Cristina M
CHEFER, Vladmir
O'DONNELL, Patricio
SHIPPENBERG, Toni S
description Kappa-opioid receptors (KORs) are important for motivation and other medial prefrontal cortex (mPFC)-dependent behaviors. Although KORs are present in the mPFC, their role in regulating transmission in this brain region and their contribution to KOR-mediated aversion are not known. Using in vivo microdialysis in rats and mice, we demonstrate that intra-mPFC administration of the selective KOR agonist U69,593 decreased local dopamine (DA) overflow, while reverse dialysis of the KOR antagonist nor-Binaltorphimine (nor-BNI) enhanced mPFC DA overflow. Extracellular amino-acid levels were also affected by KORs, as U69,593 reduced glutamate and GABA levels driven by the glutamate reuptake blocker, l-trans-pyrrolidine-2,4-dicarboxylate. Whole-cell recordings from mPFC layer V pyramidal neurons revealed that U69,593 decreased the frequency, but not amplitude, of glutamatergic mini EPSPs. To determine whether KOR regulation of mPFC DA overflow was mediated by KOR on DA terminals, we utilized a Cre recombinase-driven mouse line lacking KOR in DA neurons. In these mice, basal DA release or uptake was unaltered relative to controls, but attenuation of mPFC DA overflow by local U69,593 was not observed, indicating KOR acts directly on mPFC DA terminals to locally inhibit DA levels. Conditioning procedures were then used to determine whether mPFC KOR signaling was necessary for KOR-mediated aversion. U69,593-mediated conditioned place aversion was blocked by intra-mPFC nor-BNI microinjection. These findings demonstrate that mPFC KORs negatively regulate DA and amino-acid neurotransmission, and are necessary for KOR-mediated aversion.
doi_str_mv 10.1038/npp.2013.76
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3717537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020285781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-fa8f8bb6cdb02c4014a5eceb176ae8cb6ba8879d39bd50d7d603c9438d4f56b93</originalsourceid><addsrcrecordid>eNpdkcuLFDEYxIMo7rh68i4NIgjSY9JJ53ERlsEXju4iCnsLebVm6UnapHvB_96v2XF9nBKoH0V9VQg9JnhLMJUv0zRtO0zoVvA7aEMEwy2n7PIu2mCpaEsovTxBD2q9wpj0gsv76KSjPetUJzYoXZQwlJxmMza7XObo4PPBTJNpz6eYo28-BxemOZfmY_bLaOaYU5OHZp9X8lNYSp6LSfUQa10lkzwYJR9XMPjmYjQuNGfXoazyQ3RvMGMNj47vKfr65vWX3bt2f_72_e5s37qe4rkdjByktdx5izvHMGGmhxiWCG6CdJZbI6VQnirre-yF55g6xaj0bOi5VfQUvbrxnRZ7CN6FBCFHPZV4MOWnzibqf5UUv-tv-VpTQURPBRg8PxqU_GMJddZwoAvjaFLIS9WEEUU5gaIBffofepWXkuA8oKBz1TOxUi9uKFdyrVD6bRiC9bqjhh31uqMWHOgnf-e_ZX8PB8CzI2AqDDHABC7WP5zgRCpG6C-tpKjx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400195474</pqid></control><display><type>article</type><title>Prefrontal Cortical Kappa-Opioid Receptor Modulation of Local Neurotransmission and Conditioned Place Aversion</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>TEJEDA, Hugo A ; COUNOTTE, Danielle S ; OH, Eric ; RAMAMOORTHY, Sammanda ; SCHULTZ-KUSZAK, Kristin N ; BÄCKMAN, Cristina M ; CHEFER, Vladmir ; O'DONNELL, Patricio ; SHIPPENBERG, Toni S</creator><creatorcontrib>TEJEDA, Hugo A ; COUNOTTE, Danielle S ; OH, Eric ; RAMAMOORTHY, Sammanda ; SCHULTZ-KUSZAK, Kristin N ; BÄCKMAN, Cristina M ; CHEFER, Vladmir ; O'DONNELL, Patricio ; SHIPPENBERG, Toni S</creatorcontrib><description>Kappa-opioid receptors (KORs) are important for motivation and other medial prefrontal cortex (mPFC)-dependent behaviors. Although KORs are present in the mPFC, their role in regulating transmission in this brain region and their contribution to KOR-mediated aversion are not known. Using in vivo microdialysis in rats and mice, we demonstrate that intra-mPFC administration of the selective KOR agonist U69,593 decreased local dopamine (DA) overflow, while reverse dialysis of the KOR antagonist nor-Binaltorphimine (nor-BNI) enhanced mPFC DA overflow. Extracellular amino-acid levels were also affected by KORs, as U69,593 reduced glutamate and GABA levels driven by the glutamate reuptake blocker, l-trans-pyrrolidine-2,4-dicarboxylate. Whole-cell recordings from mPFC layer V pyramidal neurons revealed that U69,593 decreased the frequency, but not amplitude, of glutamatergic mini EPSPs. To determine whether KOR regulation of mPFC DA overflow was mediated by KOR on DA terminals, we utilized a Cre recombinase-driven mouse line lacking KOR in DA neurons. In these mice, basal DA release or uptake was unaltered relative to controls, but attenuation of mPFC DA overflow by local U69,593 was not observed, indicating KOR acts directly on mPFC DA terminals to locally inhibit DA levels. Conditioning procedures were then used to determine whether mPFC KOR signaling was necessary for KOR-mediated aversion. U69,593-mediated conditioned place aversion was blocked by intra-mPFC nor-BNI microinjection. These findings demonstrate that mPFC KORs negatively regulate DA and amino-acid neurotransmission, and are necessary for KOR-mediated aversion.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/npp.2013.76</identifier><identifier>PMID: 23542927</identifier><identifier>CODEN: NEROEW</identifier><language>eng</language><publisher>Basingstoke: Nature Publishing Group</publisher><subject><![CDATA[Analgesics - administration & dosage ; Analgesics - pharmacology ; Animals ; Avoidance Learning - drug effects ; Avoidance Learning - physiology ; Benzeneacetamides - administration & dosage ; Benzeneacetamides - pharmacology ; Biological and medical sciences ; Dicarboxylic Acids - antagonists & inhibitors ; Dicarboxylic Acids - pharmacology ; Dopamine ; Dopamine - metabolism ; Drug abuse ; Drug Interactions ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; gamma-Aminobutyric Acid - metabolism ; Glutamic Acid - metabolism ; Glutamic Acid - pharmacology ; Laboratory animals ; Male ; Medical sciences ; Mice ; Mice, Knockout ; Microinjections ; Miniature Postsynaptic Potentials - drug effects ; Naltrexone - administration & dosage ; Naltrexone - analogs & derivatives ; Naltrexone - pharmacology ; Narcotic Antagonists - administration & dosage ; Narcotic Antagonists - pharmacology ; Narcotics ; Neurosciences ; Neurotransmitter Uptake Inhibitors - antagonists & inhibitors ; Neurotransmitter Uptake Inhibitors - pharmacology ; Original ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - metabolism ; Prefrontal Cortex - physiology ; Pyramidal Cells - drug effects ; Pyramidal Cells - physiology ; Pyrrolidines - administration & dosage ; Pyrrolidines - antagonists & inhibitors ; Pyrrolidines - pharmacology ; Rats ; Receptors, Opioid, kappa - agonists ; Receptors, Opioid, kappa - antagonists & inhibitors ; Receptors, Opioid, kappa - genetics ; Receptors, Opioid, kappa - physiology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology]]></subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2013-08, Vol.38 (9), p.1770-1779</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Aug 2013</rights><rights>Copyright © 2013 American College of Neuropsychopharmacology 2013 American College of Neuropsychopharmacology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-fa8f8bb6cdb02c4014a5eceb176ae8cb6ba8879d39bd50d7d603c9438d4f56b93</citedby><cites>FETCH-LOGICAL-c530t-fa8f8bb6cdb02c4014a5eceb176ae8cb6ba8879d39bd50d7d603c9438d4f56b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717537/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717537/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27618941$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23542927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TEJEDA, Hugo A</creatorcontrib><creatorcontrib>COUNOTTE, Danielle S</creatorcontrib><creatorcontrib>OH, Eric</creatorcontrib><creatorcontrib>RAMAMOORTHY, Sammanda</creatorcontrib><creatorcontrib>SCHULTZ-KUSZAK, Kristin N</creatorcontrib><creatorcontrib>BÄCKMAN, Cristina M</creatorcontrib><creatorcontrib>CHEFER, Vladmir</creatorcontrib><creatorcontrib>O'DONNELL, Patricio</creatorcontrib><creatorcontrib>SHIPPENBERG, Toni S</creatorcontrib><title>Prefrontal Cortical Kappa-Opioid Receptor Modulation of Local Neurotransmission and Conditioned Place Aversion</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Kappa-opioid receptors (KORs) are important for motivation and other medial prefrontal cortex (mPFC)-dependent behaviors. Although KORs are present in the mPFC, their role in regulating transmission in this brain region and their contribution to KOR-mediated aversion are not known. Using in vivo microdialysis in rats and mice, we demonstrate that intra-mPFC administration of the selective KOR agonist U69,593 decreased local dopamine (DA) overflow, while reverse dialysis of the KOR antagonist nor-Binaltorphimine (nor-BNI) enhanced mPFC DA overflow. Extracellular amino-acid levels were also affected by KORs, as U69,593 reduced glutamate and GABA levels driven by the glutamate reuptake blocker, l-trans-pyrrolidine-2,4-dicarboxylate. Whole-cell recordings from mPFC layer V pyramidal neurons revealed that U69,593 decreased the frequency, but not amplitude, of glutamatergic mini EPSPs. To determine whether KOR regulation of mPFC DA overflow was mediated by KOR on DA terminals, we utilized a Cre recombinase-driven mouse line lacking KOR in DA neurons. In these mice, basal DA release or uptake was unaltered relative to controls, but attenuation of mPFC DA overflow by local U69,593 was not observed, indicating KOR acts directly on mPFC DA terminals to locally inhibit DA levels. Conditioning procedures were then used to determine whether mPFC KOR signaling was necessary for KOR-mediated aversion. U69,593-mediated conditioned place aversion was blocked by intra-mPFC nor-BNI microinjection. These findings demonstrate that mPFC KORs negatively regulate DA and amino-acid neurotransmission, and are necessary for KOR-mediated aversion.</description><subject>Analgesics - administration &amp; dosage</subject><subject>Analgesics - pharmacology</subject><subject>Animals</subject><subject>Avoidance Learning - drug effects</subject><subject>Avoidance Learning - physiology</subject><subject>Benzeneacetamides - administration &amp; dosage</subject><subject>Benzeneacetamides - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Dicarboxylic Acids - antagonists &amp; inhibitors</subject><subject>Dicarboxylic Acids - pharmacology</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Drug abuse</subject><subject>Drug Interactions</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - pharmacology</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microinjections</subject><subject>Miniature Postsynaptic Potentials - drug effects</subject><subject>Naltrexone - administration &amp; dosage</subject><subject>Naltrexone - analogs &amp; derivatives</subject><subject>Naltrexone - pharmacology</subject><subject>Narcotic Antagonists - administration &amp; dosage</subject><subject>Narcotic Antagonists - pharmacology</subject><subject>Narcotics</subject><subject>Neurosciences</subject><subject>Neurotransmitter Uptake Inhibitors - antagonists &amp; inhibitors</subject><subject>Neurotransmitter Uptake Inhibitors - pharmacology</subject><subject>Original</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Prefrontal Cortex - physiology</subject><subject>Pyramidal Cells - drug effects</subject><subject>Pyramidal Cells - physiology</subject><subject>Pyrrolidines - administration &amp; dosage</subject><subject>Pyrrolidines - antagonists &amp; inhibitors</subject><subject>Pyrrolidines - pharmacology</subject><subject>Rats</subject><subject>Receptors, Opioid, kappa - agonists</subject><subject>Receptors, Opioid, kappa - antagonists &amp; inhibitors</subject><subject>Receptors, Opioid, kappa - genetics</subject><subject>Receptors, Opioid, kappa - physiology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkcuLFDEYxIMo7rh68i4NIgjSY9JJ53ERlsEXju4iCnsLebVm6UnapHvB_96v2XF9nBKoH0V9VQg9JnhLMJUv0zRtO0zoVvA7aEMEwy2n7PIu2mCpaEsovTxBD2q9wpj0gsv76KSjPetUJzYoXZQwlJxmMza7XObo4PPBTJNpz6eYo28-BxemOZfmY_bLaOaYU5OHZp9X8lNYSp6LSfUQa10lkzwYJR9XMPjmYjQuNGfXoazyQ3RvMGMNj47vKfr65vWX3bt2f_72_e5s37qe4rkdjByktdx5izvHMGGmhxiWCG6CdJZbI6VQnirre-yF55g6xaj0bOi5VfQUvbrxnRZ7CN6FBCFHPZV4MOWnzibqf5UUv-tv-VpTQURPBRg8PxqU_GMJddZwoAvjaFLIS9WEEUU5gaIBffofepWXkuA8oKBz1TOxUi9uKFdyrVD6bRiC9bqjhh31uqMWHOgnf-e_ZX8PB8CzI2AqDDHABC7WP5zgRCpG6C-tpKjx</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>TEJEDA, Hugo A</creator><creator>COUNOTTE, Danielle S</creator><creator>OH, Eric</creator><creator>RAMAMOORTHY, Sammanda</creator><creator>SCHULTZ-KUSZAK, Kristin N</creator><creator>BÄCKMAN, Cristina M</creator><creator>CHEFER, Vladmir</creator><creator>O'DONNELL, Patricio</creator><creator>SHIPPENBERG, Toni S</creator><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20130801</creationdate><title>Prefrontal Cortical Kappa-Opioid Receptor Modulation of Local Neurotransmission and Conditioned Place Aversion</title><author>TEJEDA, Hugo A ; COUNOTTE, Danielle S ; OH, Eric ; RAMAMOORTHY, Sammanda ; SCHULTZ-KUSZAK, Kristin N ; BÄCKMAN, Cristina M ; CHEFER, Vladmir ; O'DONNELL, Patricio ; SHIPPENBERG, Toni S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-fa8f8bb6cdb02c4014a5eceb176ae8cb6ba8879d39bd50d7d603c9438d4f56b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analgesics - administration &amp; dosage</topic><topic>Analgesics - pharmacology</topic><topic>Animals</topic><topic>Avoidance Learning - drug effects</topic><topic>Avoidance Learning - physiology</topic><topic>Benzeneacetamides - administration &amp; dosage</topic><topic>Benzeneacetamides - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Dicarboxylic Acids - antagonists &amp; inhibitors</topic><topic>Dicarboxylic Acids - pharmacology</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Drug abuse</topic><topic>Drug Interactions</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - pharmacology</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microinjections</topic><topic>Miniature Postsynaptic Potentials - drug effects</topic><topic>Naltrexone - administration &amp; dosage</topic><topic>Naltrexone - analogs &amp; derivatives</topic><topic>Naltrexone - pharmacology</topic><topic>Narcotic Antagonists - administration &amp; dosage</topic><topic>Narcotic Antagonists - pharmacology</topic><topic>Narcotics</topic><topic>Neurosciences</topic><topic>Neurotransmitter Uptake Inhibitors - antagonists &amp; inhibitors</topic><topic>Neurotransmitter Uptake Inhibitors - pharmacology</topic><topic>Original</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Prefrontal Cortex - physiology</topic><topic>Pyramidal Cells - drug effects</topic><topic>Pyramidal Cells - physiology</topic><topic>Pyrrolidines - administration &amp; dosage</topic><topic>Pyrrolidines - antagonists &amp; inhibitors</topic><topic>Pyrrolidines - pharmacology</topic><topic>Rats</topic><topic>Receptors, Opioid, kappa - agonists</topic><topic>Receptors, Opioid, kappa - antagonists &amp; inhibitors</topic><topic>Receptors, Opioid, kappa - genetics</topic><topic>Receptors, Opioid, kappa - physiology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TEJEDA, Hugo A</creatorcontrib><creatorcontrib>COUNOTTE, Danielle S</creatorcontrib><creatorcontrib>OH, Eric</creatorcontrib><creatorcontrib>RAMAMOORTHY, Sammanda</creatorcontrib><creatorcontrib>SCHULTZ-KUSZAK, Kristin N</creatorcontrib><creatorcontrib>BÄCKMAN, Cristina M</creatorcontrib><creatorcontrib>CHEFER, Vladmir</creatorcontrib><creatorcontrib>O'DONNELL, Patricio</creatorcontrib><creatorcontrib>SHIPPENBERG, Toni S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TEJEDA, Hugo A</au><au>COUNOTTE, Danielle S</au><au>OH, Eric</au><au>RAMAMOORTHY, Sammanda</au><au>SCHULTZ-KUSZAK, Kristin N</au><au>BÄCKMAN, Cristina M</au><au>CHEFER, Vladmir</au><au>O'DONNELL, Patricio</au><au>SHIPPENBERG, Toni S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prefrontal Cortical Kappa-Opioid Receptor Modulation of Local Neurotransmission and Conditioned Place Aversion</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>38</volume><issue>9</issue><spage>1770</spage><epage>1779</epage><pages>1770-1779</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><coden>NEROEW</coden><abstract>Kappa-opioid receptors (KORs) are important for motivation and other medial prefrontal cortex (mPFC)-dependent behaviors. Although KORs are present in the mPFC, their role in regulating transmission in this brain region and their contribution to KOR-mediated aversion are not known. Using in vivo microdialysis in rats and mice, we demonstrate that intra-mPFC administration of the selective KOR agonist U69,593 decreased local dopamine (DA) overflow, while reverse dialysis of the KOR antagonist nor-Binaltorphimine (nor-BNI) enhanced mPFC DA overflow. Extracellular amino-acid levels were also affected by KORs, as U69,593 reduced glutamate and GABA levels driven by the glutamate reuptake blocker, l-trans-pyrrolidine-2,4-dicarboxylate. Whole-cell recordings from mPFC layer V pyramidal neurons revealed that U69,593 decreased the frequency, but not amplitude, of glutamatergic mini EPSPs. To determine whether KOR regulation of mPFC DA overflow was mediated by KOR on DA terminals, we utilized a Cre recombinase-driven mouse line lacking KOR in DA neurons. In these mice, basal DA release or uptake was unaltered relative to controls, but attenuation of mPFC DA overflow by local U69,593 was not observed, indicating KOR acts directly on mPFC DA terminals to locally inhibit DA levels. Conditioning procedures were then used to determine whether mPFC KOR signaling was necessary for KOR-mediated aversion. U69,593-mediated conditioned place aversion was blocked by intra-mPFC nor-BNI microinjection. These findings demonstrate that mPFC KORs negatively regulate DA and amino-acid neurotransmission, and are necessary for KOR-mediated aversion.</abstract><cop>Basingstoke</cop><pub>Nature Publishing Group</pub><pmid>23542927</pmid><doi>10.1038/npp.2013.76</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology (New York, N.Y.), 2013-08, Vol.38 (9), p.1770-1779
issn 0893-133X
1740-634X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3717537
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Analgesics - administration & dosage
Analgesics - pharmacology
Animals
Avoidance Learning - drug effects
Avoidance Learning - physiology
Benzeneacetamides - administration & dosage
Benzeneacetamides - pharmacology
Biological and medical sciences
Dicarboxylic Acids - antagonists & inhibitors
Dicarboxylic Acids - pharmacology
Dopamine
Dopamine - metabolism
Drug abuse
Drug Interactions
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - physiology
gamma-Aminobutyric Acid - metabolism
Glutamic Acid - metabolism
Glutamic Acid - pharmacology
Laboratory animals
Male
Medical sciences
Mice
Mice, Knockout
Microinjections
Miniature Postsynaptic Potentials - drug effects
Naltrexone - administration & dosage
Naltrexone - analogs & derivatives
Naltrexone - pharmacology
Narcotic Antagonists - administration & dosage
Narcotic Antagonists - pharmacology
Narcotics
Neurosciences
Neurotransmitter Uptake Inhibitors - antagonists & inhibitors
Neurotransmitter Uptake Inhibitors - pharmacology
Original
Prefrontal Cortex - drug effects
Prefrontal Cortex - metabolism
Prefrontal Cortex - physiology
Pyramidal Cells - drug effects
Pyramidal Cells - physiology
Pyrrolidines - administration & dosage
Pyrrolidines - antagonists & inhibitors
Pyrrolidines - pharmacology
Rats
Receptors, Opioid, kappa - agonists
Receptors, Opioid, kappa - antagonists & inhibitors
Receptors, Opioid, kappa - genetics
Receptors, Opioid, kappa - physiology
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
title Prefrontal Cortical Kappa-Opioid Receptor Modulation of Local Neurotransmission and Conditioned Place Aversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prefrontal%20Cortical%20Kappa-Opioid%20Receptor%20Modulation%20of%20Local%20Neurotransmission%20and%20Conditioned%20Place%20Aversion&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=TEJEDA,%20Hugo%20A&rft.date=2013-08-01&rft.volume=38&rft.issue=9&rft.spage=1770&rft.epage=1779&rft.pages=1770-1779&rft.issn=0893-133X&rft.eissn=1740-634X&rft.coden=NEROEW&rft_id=info:doi/10.1038/npp.2013.76&rft_dat=%3Cproquest_pubme%3E3020285781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400195474&rft_id=info:pmid/23542927&rfr_iscdi=true