Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation
Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polari...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2013-07, Vol.105 (2), p.523-532 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 2 |
container_start_page | 523 |
container_title | Biophysical journal |
container_volume | 105 |
creator | Woods, Marcella C. Uzelac, Ilija Holcomb, Mark R. Wikswo, John P. Sidorov, Veniamin Y. |
description | Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve. |
doi_str_mv | 10.1016/j.bpj.2013.06.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3714876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349513006838</els_id><sourcerecordid>1411629183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotPCA7ABS2zYJPj6J3GohFT1B5AqgRi6No7jzDhk4mAnI_Xt8TSlAhasLOt898jXH0IvgORAoHjb5fXY5ZQAy0mRE1I9QisQnGaEyOIxWhFCiozxShyh4xg7QoAKAk_REWWyJLRkK_T9wuk4-d4ZfOVs3-D15HZzryfnh3d42lr81fcW-xavt978wBdzuMuwG_Dl6IwOjdM9PjOT2y-BHhr8JfhRb-7uz9CTVvfRPr8_T9DN1eW384_Z9ecPn87PrjMjCJsyWumaV2Aq1oAuwDSkFpITKQSjhgndGtaWtGhboTnXjakrKZtapEDzqtXATtD7pXec651tjB2moHs1BrfT4VZ57dTfyeC2auP3ipXAZVmkgjf3BcH_nG2c1M5FY_teD9bPUQEHKGgFkiX09T9o5-cwpPUOFJUFSFklChbKBB9jsO3DY4Cogz_VqeRPHfwpUqjkL828_HOLh4nfwhLwagFa7ZXeBBfVzTo1iCQXGHCRiNOFsOm3984GFY2zg7GNC9ZMqvHuPw_4BaChtTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412861889</pqid></control><display><type>article</type><title>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Woods, Marcella C. ; Uzelac, Ilija ; Holcomb, Mark R. ; Wikswo, John P. ; Sidorov, Veniamin Y.</creator><creatorcontrib>Woods, Marcella C. ; Uzelac, Ilija ; Holcomb, Mark R. ; Wikswo, John P. ; Sidorov, Veniamin Y.</creatorcontrib><description>Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2013.06.009</identifier><identifier>PMID: 23870273</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics ; blood pressure ; Cardiovascular system ; Defibrillators ; Diastole ; Electric Countershock ; electricity ; electrodes ; Epicardial Mapping ; Flow velocity ; heart ; Heart rate ; In Vitro Techniques ; Models, Cardiovascular ; Myocardial Perfusion Imaging ; Pericardium - physiology ; Rabbits ; stunning methods ; Systems Biophysics ; Time Factors</subject><ispartof>Biophysical journal, 2013-07, Vol.105 (2), p.523-532</ispartof><rights>2013 Biophysical Society</rights><rights>Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 16, 2013</rights><rights>2013 by the Biophysical Society. 2013 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</citedby><cites>FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714876/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349513006838$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23870273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Marcella C.</creatorcontrib><creatorcontrib>Uzelac, Ilija</creatorcontrib><creatorcontrib>Holcomb, Mark R.</creatorcontrib><creatorcontrib>Wikswo, John P.</creatorcontrib><creatorcontrib>Sidorov, Veniamin Y.</creatorcontrib><title>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.</description><subject>Animals</subject><subject>Biophysics</subject><subject>blood pressure</subject><subject>Cardiovascular system</subject><subject>Defibrillators</subject><subject>Diastole</subject><subject>Electric Countershock</subject><subject>electricity</subject><subject>electrodes</subject><subject>Epicardial Mapping</subject><subject>Flow velocity</subject><subject>heart</subject><subject>Heart rate</subject><subject>In Vitro Techniques</subject><subject>Models, Cardiovascular</subject><subject>Myocardial Perfusion Imaging</subject><subject>Pericardium - physiology</subject><subject>Rabbits</subject><subject>stunning methods</subject><subject>Systems Biophysics</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EotPCA7ABS2zYJPj6J3GohFT1B5AqgRi6No7jzDhk4mAnI_Xt8TSlAhasLOt898jXH0IvgORAoHjb5fXY5ZQAy0mRE1I9QisQnGaEyOIxWhFCiozxShyh4xg7QoAKAk_REWWyJLRkK_T9wuk4-d4ZfOVs3-D15HZzryfnh3d42lr81fcW-xavt978wBdzuMuwG_Dl6IwOjdM9PjOT2y-BHhr8JfhRb-7uz9CTVvfRPr8_T9DN1eW384_Z9ecPn87PrjMjCJsyWumaV2Aq1oAuwDSkFpITKQSjhgndGtaWtGhboTnXjakrKZtapEDzqtXATtD7pXec651tjB2moHs1BrfT4VZ57dTfyeC2auP3ipXAZVmkgjf3BcH_nG2c1M5FY_teD9bPUQEHKGgFkiX09T9o5-cwpPUOFJUFSFklChbKBB9jsO3DY4Cogz_VqeRPHfwpUqjkL828_HOLh4nfwhLwagFa7ZXeBBfVzTo1iCQXGHCRiNOFsOm3984GFY2zg7GNC9ZMqvHuPw_4BaChtTQ</recordid><startdate>20130716</startdate><enddate>20130716</enddate><creator>Woods, Marcella C.</creator><creator>Uzelac, Ilija</creator><creator>Holcomb, Mark R.</creator><creator>Wikswo, John P.</creator><creator>Sidorov, Veniamin Y.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130716</creationdate><title>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</title><author>Woods, Marcella C. ; Uzelac, Ilija ; Holcomb, Mark R. ; Wikswo, John P. ; Sidorov, Veniamin Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>blood pressure</topic><topic>Cardiovascular system</topic><topic>Defibrillators</topic><topic>Diastole</topic><topic>Electric Countershock</topic><topic>electricity</topic><topic>electrodes</topic><topic>Epicardial Mapping</topic><topic>Flow velocity</topic><topic>heart</topic><topic>Heart rate</topic><topic>In Vitro Techniques</topic><topic>Models, Cardiovascular</topic><topic>Myocardial Perfusion Imaging</topic><topic>Pericardium - physiology</topic><topic>Rabbits</topic><topic>stunning methods</topic><topic>Systems Biophysics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Marcella C.</creatorcontrib><creatorcontrib>Uzelac, Ilija</creatorcontrib><creatorcontrib>Holcomb, Mark R.</creatorcontrib><creatorcontrib>Wikswo, John P.</creatorcontrib><creatorcontrib>Sidorov, Veniamin Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Marcella C.</au><au>Uzelac, Ilija</au><au>Holcomb, Mark R.</au><au>Wikswo, John P.</au><au>Sidorov, Veniamin Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2013-07-16</date><risdate>2013</risdate><volume>105</volume><issue>2</issue><spage>523</spage><epage>532</epage><pages>523-532</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23870273</pmid><doi>10.1016/j.bpj.2013.06.009</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2013-07, Vol.105 (2), p.523-532 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3714876 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biophysics blood pressure Cardiovascular system Defibrillators Diastole Electric Countershock electricity electrodes Epicardial Mapping Flow velocity heart Heart rate In Vitro Techniques Models, Cardiovascular Myocardial Perfusion Imaging Pericardium - physiology Rabbits stunning methods Systems Biophysics Time Factors |
title | Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diastolic%20Field%20Stimulation:%20the%20Role%20of%20Shock%20Duration%20in%20Epicardial%20Activation%20and%20Propagation&rft.jtitle=Biophysical%20journal&rft.au=Woods,%20Marcella%C2%A0C.&rft.date=2013-07-16&rft.volume=105&rft.issue=2&rft.spage=523&rft.epage=532&rft.pages=523-532&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2013.06.009&rft_dat=%3Cproquest_pubme%3E1411629183%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412861889&rft_id=info:pmid/23870273&rft_els_id=S0006349513006838&rfr_iscdi=true |