Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation

Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2013-07, Vol.105 (2), p.523-532
Hauptverfasser: Woods, Marcella C., Uzelac, Ilija, Holcomb, Mark R., Wikswo, John P., Sidorov, Veniamin Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 2
container_start_page 523
container_title Biophysical journal
container_volume 105
creator Woods, Marcella C.
Uzelac, Ilija
Holcomb, Mark R.
Wikswo, John P.
Sidorov, Veniamin Y.
description Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.
doi_str_mv 10.1016/j.bpj.2013.06.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3714876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349513006838</els_id><sourcerecordid>1411629183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotPCA7ABS2zYJPj6J3GohFT1B5AqgRi6No7jzDhk4mAnI_Xt8TSlAhasLOt898jXH0IvgORAoHjb5fXY5ZQAy0mRE1I9QisQnGaEyOIxWhFCiozxShyh4xg7QoAKAk_REWWyJLRkK_T9wuk4-d4ZfOVs3-D15HZzryfnh3d42lr81fcW-xavt978wBdzuMuwG_Dl6IwOjdM9PjOT2y-BHhr8JfhRb-7uz9CTVvfRPr8_T9DN1eW384_Z9ecPn87PrjMjCJsyWumaV2Aq1oAuwDSkFpITKQSjhgndGtaWtGhboTnXjakrKZtapEDzqtXATtD7pXec651tjB2moHs1BrfT4VZ57dTfyeC2auP3ipXAZVmkgjf3BcH_nG2c1M5FY_teD9bPUQEHKGgFkiX09T9o5-cwpPUOFJUFSFklChbKBB9jsO3DY4Cogz_VqeRPHfwpUqjkL828_HOLh4nfwhLwagFa7ZXeBBfVzTo1iCQXGHCRiNOFsOm3984GFY2zg7GNC9ZMqvHuPw_4BaChtTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412861889</pqid></control><display><type>article</type><title>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Woods, Marcella C. ; Uzelac, Ilija ; Holcomb, Mark R. ; Wikswo, John P. ; Sidorov, Veniamin Y.</creator><creatorcontrib>Woods, Marcella C. ; Uzelac, Ilija ; Holcomb, Mark R. ; Wikswo, John P. ; Sidorov, Veniamin Y.</creatorcontrib><description>Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of &gt;3 ms in duration created strong hyperpolarization associated with significant delay (P &lt; 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2013.06.009</identifier><identifier>PMID: 23870273</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysics ; blood pressure ; Cardiovascular system ; Defibrillators ; Diastole ; Electric Countershock ; electricity ; electrodes ; Epicardial Mapping ; Flow velocity ; heart ; Heart rate ; In Vitro Techniques ; Models, Cardiovascular ; Myocardial Perfusion Imaging ; Pericardium - physiology ; Rabbits ; stunning methods ; Systems Biophysics ; Time Factors</subject><ispartof>Biophysical journal, 2013-07, Vol.105 (2), p.523-532</ispartof><rights>2013 Biophysical Society</rights><rights>Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 16, 2013</rights><rights>2013 by the Biophysical Society. 2013 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</citedby><cites>FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714876/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349513006838$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23870273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Marcella C.</creatorcontrib><creatorcontrib>Uzelac, Ilija</creatorcontrib><creatorcontrib>Holcomb, Mark R.</creatorcontrib><creatorcontrib>Wikswo, John P.</creatorcontrib><creatorcontrib>Sidorov, Veniamin Y.</creatorcontrib><title>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of &gt;3 ms in duration created strong hyperpolarization associated with significant delay (P &lt; 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.</description><subject>Animals</subject><subject>Biophysics</subject><subject>blood pressure</subject><subject>Cardiovascular system</subject><subject>Defibrillators</subject><subject>Diastole</subject><subject>Electric Countershock</subject><subject>electricity</subject><subject>electrodes</subject><subject>Epicardial Mapping</subject><subject>Flow velocity</subject><subject>heart</subject><subject>Heart rate</subject><subject>In Vitro Techniques</subject><subject>Models, Cardiovascular</subject><subject>Myocardial Perfusion Imaging</subject><subject>Pericardium - physiology</subject><subject>Rabbits</subject><subject>stunning methods</subject><subject>Systems Biophysics</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EotPCA7ABS2zYJPj6J3GohFT1B5AqgRi6No7jzDhk4mAnI_Xt8TSlAhasLOt898jXH0IvgORAoHjb5fXY5ZQAy0mRE1I9QisQnGaEyOIxWhFCiozxShyh4xg7QoAKAk_REWWyJLRkK_T9wuk4-d4ZfOVs3-D15HZzryfnh3d42lr81fcW-xavt978wBdzuMuwG_Dl6IwOjdM9PjOT2y-BHhr8JfhRb-7uz9CTVvfRPr8_T9DN1eW384_Z9ecPn87PrjMjCJsyWumaV2Aq1oAuwDSkFpITKQSjhgndGtaWtGhboTnXjakrKZtapEDzqtXATtD7pXec651tjB2moHs1BrfT4VZ57dTfyeC2auP3ipXAZVmkgjf3BcH_nG2c1M5FY_teD9bPUQEHKGgFkiX09T9o5-cwpPUOFJUFSFklChbKBB9jsO3DY4Cogz_VqeRPHfwpUqjkL828_HOLh4nfwhLwagFa7ZXeBBfVzTo1iCQXGHCRiNOFsOm3984GFY2zg7GNC9ZMqvHuPw_4BaChtTQ</recordid><startdate>20130716</startdate><enddate>20130716</enddate><creator>Woods, Marcella C.</creator><creator>Uzelac, Ilija</creator><creator>Holcomb, Mark R.</creator><creator>Wikswo, John P.</creator><creator>Sidorov, Veniamin Y.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130716</creationdate><title>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</title><author>Woods, Marcella C. ; Uzelac, Ilija ; Holcomb, Mark R. ; Wikswo, John P. ; Sidorov, Veniamin Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-29ab491c93d1a61cd0b584085532c35afc3f726ff5a44adcb988db55afa49fa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biophysics</topic><topic>blood pressure</topic><topic>Cardiovascular system</topic><topic>Defibrillators</topic><topic>Diastole</topic><topic>Electric Countershock</topic><topic>electricity</topic><topic>electrodes</topic><topic>Epicardial Mapping</topic><topic>Flow velocity</topic><topic>heart</topic><topic>Heart rate</topic><topic>In Vitro Techniques</topic><topic>Models, Cardiovascular</topic><topic>Myocardial Perfusion Imaging</topic><topic>Pericardium - physiology</topic><topic>Rabbits</topic><topic>stunning methods</topic><topic>Systems Biophysics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Marcella C.</creatorcontrib><creatorcontrib>Uzelac, Ilija</creatorcontrib><creatorcontrib>Holcomb, Mark R.</creatorcontrib><creatorcontrib>Wikswo, John P.</creatorcontrib><creatorcontrib>Sidorov, Veniamin Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Marcella C.</au><au>Uzelac, Ilija</au><au>Holcomb, Mark R.</au><au>Wikswo, John P.</au><au>Sidorov, Veniamin Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2013-07-16</date><risdate>2013</risdate><volume>105</volume><issue>2</issue><spage>523</spage><epage>532</epage><pages>523-532</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1–0.2-ms shocks produced slow and heterogeneous activation. During 0.8–1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3–8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of &gt;3 ms in duration created strong hyperpolarization associated with significant delay (P &lt; 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23870273</pmid><doi>10.1016/j.bpj.2013.06.009</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2013-07, Vol.105 (2), p.523-532
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3714876
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biophysics
blood pressure
Cardiovascular system
Defibrillators
Diastole
Electric Countershock
electricity
electrodes
Epicardial Mapping
Flow velocity
heart
Heart rate
In Vitro Techniques
Models, Cardiovascular
Myocardial Perfusion Imaging
Pericardium - physiology
Rabbits
stunning methods
Systems Biophysics
Time Factors
title Diastolic Field Stimulation: the Role of Shock Duration in Epicardial Activation and Propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diastolic%20Field%20Stimulation:%20the%20Role%20of%20Shock%20Duration%20in%20Epicardial%20Activation%20and%20Propagation&rft.jtitle=Biophysical%20journal&rft.au=Woods,%20Marcella%C2%A0C.&rft.date=2013-07-16&rft.volume=105&rft.issue=2&rft.spage=523&rft.epage=532&rft.pages=523-532&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2013.06.009&rft_dat=%3Cproquest_pubme%3E1411629183%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412861889&rft_id=info:pmid/23870273&rft_els_id=S0006349513006838&rfr_iscdi=true