Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo

In vivo delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells in vivo in hematopoietic stem cell-engrafted NOD.Cg- Prkdc scid IL2rγ tm1Wjl (abbreviated NOD- scid IL2rγ null ) mice, using biodegradable nanopartic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2013-06, Vol.20 (6), p.658-669
Hauptverfasser: McNeer, N A, Schleifman, E B, Cuthbert, A, Brehm, M, Jackson, A, Cheng, C, Anandalingam, K, Kumar, P, Shultz, L D, Greiner, D L, Mark Saltzman, W, Glazer, P M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 6
container_start_page 658
container_title Gene therapy
container_volume 20
creator McNeer, N A
Schleifman, E B
Cuthbert, A
Brehm, M
Jackson, A
Cheng, C
Anandalingam, K
Kumar, P
Shultz, L D
Greiner, D L
Mark Saltzman, W
Glazer, P M
description In vivo delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells in vivo in hematopoietic stem cell-engrafted NOD.Cg- Prkdc scid IL2rγ tm1Wjl (abbreviated NOD- scid IL2rγ null ) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules. In vitro screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human CCR5 gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed in vivo modification of the CCR5 gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous CCR2 gene was two orders of magnitude lower. We also induced specific modification in the β-globin gene using nanoparticles carrying β-globin -targeted PNAs/DNAs, demonstrating this method’s versatility. In vivo testing in an enhanced green fluorescent protein- β-globin reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct in vivo gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated ex vivo .
doi_str_mv 10.1038/gt.2012.82
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3713483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A334605624</galeid><sourcerecordid>A334605624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</originalsourceid><addsrcrecordid>eNp9kltrFDEUxwdRbK2--AEkIIgXZs1tksyLsNRboahYfQ7ZmTOzKTPJNsks3a_hJzZDa-2qSB5yOb_zz7kVxWOCFwQz9bpPC4oJXSh6pzgkXIqy4oLeLQ5xLepSEqoOigcxnmOMuVT0fnFAGZaCyfqw-HG2iwlG26AWBruFsEO-QynYzQCXZefDaF2PvnxaIuNa1HrnA3qbb6sdcsb5jQnJNgNENEJrTcqHaBOUcQON7bJqD86PgLIxzUJZez2NxqE1jCb5jbeQ_VEDwxCRdWhrt_5hca8zQ4RH1_tR8f39u2_HH8vTzx9OjpenZSMxSaVUXNGKMcHlilOKpcKUNwIL3rWkqqFpFJi2NqJZVVSJulO87YABM4ZJ0hl2VLy50t1Mqxx9Ay4FM-hNsKMJO-2N1fsWZ9e691ud3RlXLAs8vxYI_mKCmPRo45yKceCnqAmTFFc1ETP69A_03E_B5fQ0FZwLoajC_6MIExVRFZfyN9WbAbR1nc_RNfPXeskYF7gSlGdq8Q8qr3butnfQ2fy-5_BizyEzCS5Tb6YY9cnZ13322S12DWZI6-iHKVnv4j748gpsgo8xQHdTXoL1PLy6T3oeXq1ohp_cbsgN-mtaM_DqCojZ5HoIt-rzt9xPUJL2iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365185477</pqid></control><display><type>article</type><title>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>McNeer, N A ; Schleifman, E B ; Cuthbert, A ; Brehm, M ; Jackson, A ; Cheng, C ; Anandalingam, K ; Kumar, P ; Shultz, L D ; Greiner, D L ; Mark Saltzman, W ; Glazer, P M</creator><creatorcontrib>McNeer, N A ; Schleifman, E B ; Cuthbert, A ; Brehm, M ; Jackson, A ; Cheng, C ; Anandalingam, K ; Kumar, P ; Shultz, L D ; Greiner, D L ; Mark Saltzman, W ; Glazer, P M</creatorcontrib><description>In vivo delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells in vivo in hematopoietic stem cell-engrafted NOD.Cg- Prkdc scid IL2rγ tm1Wjl (abbreviated NOD- scid IL2rγ null ) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules. In vitro screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human CCR5 gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed in vivo modification of the CCR5 gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous CCR2 gene was two orders of magnitude lower. We also induced specific modification in the β-globin gene using nanoparticles carrying β-globin -targeted PNAs/DNAs, demonstrating this method’s versatility. In vivo testing in an enhanced green fluorescent protein- β-globin reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct in vivo gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated ex vivo .</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2012.82</identifier><identifier>PMID: 23076379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2300 ; 631/1647/350/354 ; 692/700/565/201 ; Animals ; Biodegradability ; Biomedical and Life Sciences ; Biomedicine ; Bone marrow ; CCR2 protein ; CCR5 protein ; Cell Biology ; Cell Line ; DNA - administration &amp; dosage ; DNA - chemistry ; DNA - genetics ; Gene Expression ; Gene Targeting ; Gene Therapy ; Gene Transfer Techniques ; Genetic aspects ; Genetic Therapy ; Genetically modified organisms ; Genome editing ; Green fluorescent protein ; Health aspects ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Human Genetics ; Humans ; Intravenous administration ; Mice ; Monocyte chemoattractant protein 1 ; mRNA ; Nanoparticles ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Nanotechnology ; original-article ; Peptide nucleic acids ; Peptide Nucleic Acids - administration &amp; dosage ; Peptide Nucleic Acids - chemistry ; Peptide Nucleic Acids - genetics ; Physiological aspects ; Receptors, CCR5 - genetics ; Rodents ; Single-stranded DNA ; Spleen ; Stem cells</subject><ispartof>Gene therapy, 2013-06, Vol.20 (6), p.658-669</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><rights>Macmillan Publishers Limited 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</citedby><cites>FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/gt.2012.82$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/gt.2012.82$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23076379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNeer, N A</creatorcontrib><creatorcontrib>Schleifman, E B</creatorcontrib><creatorcontrib>Cuthbert, A</creatorcontrib><creatorcontrib>Brehm, M</creatorcontrib><creatorcontrib>Jackson, A</creatorcontrib><creatorcontrib>Cheng, C</creatorcontrib><creatorcontrib>Anandalingam, K</creatorcontrib><creatorcontrib>Kumar, P</creatorcontrib><creatorcontrib>Shultz, L D</creatorcontrib><creatorcontrib>Greiner, D L</creatorcontrib><creatorcontrib>Mark Saltzman, W</creatorcontrib><creatorcontrib>Glazer, P M</creatorcontrib><title>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>In vivo delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells in vivo in hematopoietic stem cell-engrafted NOD.Cg- Prkdc scid IL2rγ tm1Wjl (abbreviated NOD- scid IL2rγ null ) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules. In vitro screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human CCR5 gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed in vivo modification of the CCR5 gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous CCR2 gene was two orders of magnitude lower. We also induced specific modification in the β-globin gene using nanoparticles carrying β-globin -targeted PNAs/DNAs, demonstrating this method’s versatility. In vivo testing in an enhanced green fluorescent protein- β-globin reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct in vivo gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated ex vivo .</description><subject>631/1647/2300</subject><subject>631/1647/350/354</subject><subject>692/700/565/201</subject><subject>Animals</subject><subject>Biodegradability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone marrow</subject><subject>CCR2 protein</subject><subject>CCR5 protein</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>DNA - administration &amp; dosage</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Gene Expression</subject><subject>Gene Targeting</subject><subject>Gene Therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic aspects</subject><subject>Genetic Therapy</subject><subject>Genetically modified organisms</subject><subject>Genome editing</subject><subject>Green fluorescent protein</subject><subject>Health aspects</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Intravenous administration</subject><subject>Mice</subject><subject>Monocyte chemoattractant protein 1</subject><subject>mRNA</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>original-article</subject><subject>Peptide nucleic acids</subject><subject>Peptide Nucleic Acids - administration &amp; dosage</subject><subject>Peptide Nucleic Acids - chemistry</subject><subject>Peptide Nucleic Acids - genetics</subject><subject>Physiological aspects</subject><subject>Receptors, CCR5 - genetics</subject><subject>Rodents</subject><subject>Single-stranded DNA</subject><subject>Spleen</subject><subject>Stem cells</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kltrFDEUxwdRbK2--AEkIIgXZs1tksyLsNRboahYfQ7ZmTOzKTPJNsks3a_hJzZDa-2qSB5yOb_zz7kVxWOCFwQz9bpPC4oJXSh6pzgkXIqy4oLeLQ5xLepSEqoOigcxnmOMuVT0fnFAGZaCyfqw-HG2iwlG26AWBruFsEO-QynYzQCXZefDaF2PvnxaIuNa1HrnA3qbb6sdcsb5jQnJNgNENEJrTcqHaBOUcQON7bJqD86PgLIxzUJZez2NxqE1jCb5jbeQ_VEDwxCRdWhrt_5hca8zQ4RH1_tR8f39u2_HH8vTzx9OjpenZSMxSaVUXNGKMcHlilOKpcKUNwIL3rWkqqFpFJi2NqJZVVSJulO87YABM4ZJ0hl2VLy50t1Mqxx9Ay4FM-hNsKMJO-2N1fsWZ9e691ud3RlXLAs8vxYI_mKCmPRo45yKceCnqAmTFFc1ETP69A_03E_B5fQ0FZwLoajC_6MIExVRFZfyN9WbAbR1nc_RNfPXeskYF7gSlGdq8Q8qr3butnfQ2fy-5_BizyEzCS5Tb6YY9cnZ13322S12DWZI6-iHKVnv4j748gpsgo8xQHdTXoL1PLy6T3oeXq1ohp_cbsgN-mtaM_DqCojZ5HoIt-rzt9xPUJL2iQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>McNeer, N A</creator><creator>Schleifman, E B</creator><creator>Cuthbert, A</creator><creator>Brehm, M</creator><creator>Jackson, A</creator><creator>Cheng, C</creator><creator>Anandalingam, K</creator><creator>Kumar, P</creator><creator>Shultz, L D</creator><creator>Greiner, D L</creator><creator>Mark Saltzman, W</creator><creator>Glazer, P M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20130601</creationdate><title>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</title><author>McNeer, N A ; Schleifman, E B ; Cuthbert, A ; Brehm, M ; Jackson, A ; Cheng, C ; Anandalingam, K ; Kumar, P ; Shultz, L D ; Greiner, D L ; Mark Saltzman, W ; Glazer, P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/1647/2300</topic><topic>631/1647/350/354</topic><topic>692/700/565/201</topic><topic>Animals</topic><topic>Biodegradability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone marrow</topic><topic>CCR2 protein</topic><topic>CCR5 protein</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>DNA - administration &amp; dosage</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Gene Expression</topic><topic>Gene Targeting</topic><topic>Gene Therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic aspects</topic><topic>Genetic Therapy</topic><topic>Genetically modified organisms</topic><topic>Genome editing</topic><topic>Green fluorescent protein</topic><topic>Health aspects</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Intravenous administration</topic><topic>Mice</topic><topic>Monocyte chemoattractant protein 1</topic><topic>mRNA</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>original-article</topic><topic>Peptide nucleic acids</topic><topic>Peptide Nucleic Acids - administration &amp; dosage</topic><topic>Peptide Nucleic Acids - chemistry</topic><topic>Peptide Nucleic Acids - genetics</topic><topic>Physiological aspects</topic><topic>Receptors, CCR5 - genetics</topic><topic>Rodents</topic><topic>Single-stranded DNA</topic><topic>Spleen</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNeer, N A</creatorcontrib><creatorcontrib>Schleifman, E B</creatorcontrib><creatorcontrib>Cuthbert, A</creatorcontrib><creatorcontrib>Brehm, M</creatorcontrib><creatorcontrib>Jackson, A</creatorcontrib><creatorcontrib>Cheng, C</creatorcontrib><creatorcontrib>Anandalingam, K</creatorcontrib><creatorcontrib>Kumar, P</creatorcontrib><creatorcontrib>Shultz, L D</creatorcontrib><creatorcontrib>Greiner, D L</creatorcontrib><creatorcontrib>Mark Saltzman, W</creatorcontrib><creatorcontrib>Glazer, P M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNeer, N A</au><au>Schleifman, E B</au><au>Cuthbert, A</au><au>Brehm, M</au><au>Jackson, A</au><au>Cheng, C</au><au>Anandalingam, K</au><au>Kumar, P</au><au>Shultz, L D</au><au>Greiner, D L</au><au>Mark Saltzman, W</au><au>Glazer, P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>20</volume><issue>6</issue><spage>658</spage><epage>669</epage><pages>658-669</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>In vivo delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells in vivo in hematopoietic stem cell-engrafted NOD.Cg- Prkdc scid IL2rγ tm1Wjl (abbreviated NOD- scid IL2rγ null ) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules. In vitro screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human CCR5 gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed in vivo modification of the CCR5 gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous CCR2 gene was two orders of magnitude lower. We also induced specific modification in the β-globin gene using nanoparticles carrying β-globin -targeted PNAs/DNAs, demonstrating this method’s versatility. In vivo testing in an enhanced green fluorescent protein- β-globin reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct in vivo gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated ex vivo .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23076379</pmid><doi>10.1038/gt.2012.82</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2013-06, Vol.20 (6), p.658-669
issn 0969-7128
1476-5462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3713483
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals
subjects 631/1647/2300
631/1647/350/354
692/700/565/201
Animals
Biodegradability
Biomedical and Life Sciences
Biomedicine
Bone marrow
CCR2 protein
CCR5 protein
Cell Biology
Cell Line
DNA - administration & dosage
DNA - chemistry
DNA - genetics
Gene Expression
Gene Targeting
Gene Therapy
Gene Transfer Techniques
Genetic aspects
Genetic Therapy
Genetically modified organisms
Genome editing
Green fluorescent protein
Health aspects
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Human Genetics
Humans
Intravenous administration
Mice
Monocyte chemoattractant protein 1
mRNA
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Nanotechnology
original-article
Peptide nucleic acids
Peptide Nucleic Acids - administration & dosage
Peptide Nucleic Acids - chemistry
Peptide Nucleic Acids - genetics
Physiological aspects
Receptors, CCR5 - genetics
Rodents
Single-stranded DNA
Spleen
Stem cells
title Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systemic%20delivery%20of%20triplex-forming%20PNA%20and%20donor%20DNA%20by%20nanoparticles%20mediates%20site-specific%20genome%20editing%20of%20human%20hematopoietic%20cells%20in%20vivo&rft.jtitle=Gene%20therapy&rft.au=McNeer,%20N%20A&rft.date=2013-06-01&rft.volume=20&rft.issue=6&rft.spage=658&rft.epage=669&rft.pages=658-669&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2012.82&rft_dat=%3Cgale_pubme%3EA334605624%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365185477&rft_id=info:pmid/23076379&rft_galeid=A334605624&rfr_iscdi=true