Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo
In vivo delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells in vivo in hematopoietic stem cell-engrafted NOD.Cg- Prkdc scid IL2rγ tm1Wjl (abbreviated NOD- scid IL2rγ null ) mice, using biodegradable nanopartic...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2013-06, Vol.20 (6), p.658-669 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 669 |
---|---|
container_issue | 6 |
container_start_page | 658 |
container_title | Gene therapy |
container_volume | 20 |
creator | McNeer, N A Schleifman, E B Cuthbert, A Brehm, M Jackson, A Cheng, C Anandalingam, K Kumar, P Shultz, L D Greiner, D L Mark Saltzman, W Glazer, P M |
description | In vivo
delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells
in vivo
in hematopoietic stem cell-engrafted NOD.Cg-
Prkdc
scid
IL2rγ
tm1Wjl
(abbreviated NOD-
scid IL2rγ
null
) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules.
In vitro
screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human
CCR5
gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed
in vivo
modification of the
CCR5
gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous
CCR2
gene was two orders of magnitude lower. We also induced specific modification in the
β-globin
gene using nanoparticles carrying
β-globin
-targeted PNAs/DNAs, demonstrating this method’s versatility.
In vivo
testing in an enhanced green fluorescent protein-
β-globin
reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct
in vivo
gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated
ex vivo
. |
doi_str_mv | 10.1038/gt.2012.82 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3713483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A334605624</galeid><sourcerecordid>A334605624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</originalsourceid><addsrcrecordid>eNp9kltrFDEUxwdRbK2--AEkIIgXZs1tksyLsNRboahYfQ7ZmTOzKTPJNsks3a_hJzZDa-2qSB5yOb_zz7kVxWOCFwQz9bpPC4oJXSh6pzgkXIqy4oLeLQ5xLepSEqoOigcxnmOMuVT0fnFAGZaCyfqw-HG2iwlG26AWBruFsEO-QynYzQCXZefDaF2PvnxaIuNa1HrnA3qbb6sdcsb5jQnJNgNENEJrTcqHaBOUcQON7bJqD86PgLIxzUJZez2NxqE1jCb5jbeQ_VEDwxCRdWhrt_5hca8zQ4RH1_tR8f39u2_HH8vTzx9OjpenZSMxSaVUXNGKMcHlilOKpcKUNwIL3rWkqqFpFJi2NqJZVVSJulO87YABM4ZJ0hl2VLy50t1Mqxx9Ay4FM-hNsKMJO-2N1fsWZ9e691ud3RlXLAs8vxYI_mKCmPRo45yKceCnqAmTFFc1ETP69A_03E_B5fQ0FZwLoajC_6MIExVRFZfyN9WbAbR1nc_RNfPXeskYF7gSlGdq8Q8qr3butnfQ2fy-5_BizyEzCS5Tb6YY9cnZ13322S12DWZI6-iHKVnv4j748gpsgo8xQHdTXoL1PLy6T3oeXq1ohp_cbsgN-mtaM_DqCojZ5HoIt-rzt9xPUJL2iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365185477</pqid></control><display><type>article</type><title>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>McNeer, N A ; Schleifman, E B ; Cuthbert, A ; Brehm, M ; Jackson, A ; Cheng, C ; Anandalingam, K ; Kumar, P ; Shultz, L D ; Greiner, D L ; Mark Saltzman, W ; Glazer, P M</creator><creatorcontrib>McNeer, N A ; Schleifman, E B ; Cuthbert, A ; Brehm, M ; Jackson, A ; Cheng, C ; Anandalingam, K ; Kumar, P ; Shultz, L D ; Greiner, D L ; Mark Saltzman, W ; Glazer, P M</creatorcontrib><description>In vivo
delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells
in vivo
in hematopoietic stem cell-engrafted NOD.Cg-
Prkdc
scid
IL2rγ
tm1Wjl
(abbreviated NOD-
scid IL2rγ
null
) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules.
In vitro
screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human
CCR5
gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed
in vivo
modification of the
CCR5
gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous
CCR2
gene was two orders of magnitude lower. We also induced specific modification in the
β-globin
gene using nanoparticles carrying
β-globin
-targeted PNAs/DNAs, demonstrating this method’s versatility.
In vivo
testing in an enhanced green fluorescent protein-
β-globin
reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct
in vivo
gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated
ex vivo
.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/gt.2012.82</identifier><identifier>PMID: 23076379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/2300 ; 631/1647/350/354 ; 692/700/565/201 ; Animals ; Biodegradability ; Biomedical and Life Sciences ; Biomedicine ; Bone marrow ; CCR2 protein ; CCR5 protein ; Cell Biology ; Cell Line ; DNA - administration & dosage ; DNA - chemistry ; DNA - genetics ; Gene Expression ; Gene Targeting ; Gene Therapy ; Gene Transfer Techniques ; Genetic aspects ; Genetic Therapy ; Genetically modified organisms ; Genome editing ; Green fluorescent protein ; Health aspects ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Human Genetics ; Humans ; Intravenous administration ; Mice ; Monocyte chemoattractant protein 1 ; mRNA ; Nanoparticles ; Nanoparticles - administration & dosage ; Nanoparticles - chemistry ; Nanotechnology ; original-article ; Peptide nucleic acids ; Peptide Nucleic Acids - administration & dosage ; Peptide Nucleic Acids - chemistry ; Peptide Nucleic Acids - genetics ; Physiological aspects ; Receptors, CCR5 - genetics ; Rodents ; Single-stranded DNA ; Spleen ; Stem cells</subject><ispartof>Gene therapy, 2013-06, Vol.20 (6), p.658-669</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><rights>Macmillan Publishers Limited 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</citedby><cites>FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/gt.2012.82$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/gt.2012.82$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23076379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNeer, N A</creatorcontrib><creatorcontrib>Schleifman, E B</creatorcontrib><creatorcontrib>Cuthbert, A</creatorcontrib><creatorcontrib>Brehm, M</creatorcontrib><creatorcontrib>Jackson, A</creatorcontrib><creatorcontrib>Cheng, C</creatorcontrib><creatorcontrib>Anandalingam, K</creatorcontrib><creatorcontrib>Kumar, P</creatorcontrib><creatorcontrib>Shultz, L D</creatorcontrib><creatorcontrib>Greiner, D L</creatorcontrib><creatorcontrib>Mark Saltzman, W</creatorcontrib><creatorcontrib>Glazer, P M</creatorcontrib><title>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>In vivo
delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells
in vivo
in hematopoietic stem cell-engrafted NOD.Cg-
Prkdc
scid
IL2rγ
tm1Wjl
(abbreviated NOD-
scid IL2rγ
null
) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules.
In vitro
screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human
CCR5
gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed
in vivo
modification of the
CCR5
gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous
CCR2
gene was two orders of magnitude lower. We also induced specific modification in the
β-globin
gene using nanoparticles carrying
β-globin
-targeted PNAs/DNAs, demonstrating this method’s versatility.
In vivo
testing in an enhanced green fluorescent protein-
β-globin
reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct
in vivo
gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated
ex vivo
.</description><subject>631/1647/2300</subject><subject>631/1647/350/354</subject><subject>692/700/565/201</subject><subject>Animals</subject><subject>Biodegradability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone marrow</subject><subject>CCR2 protein</subject><subject>CCR5 protein</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>DNA - administration & dosage</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Gene Expression</subject><subject>Gene Targeting</subject><subject>Gene Therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic aspects</subject><subject>Genetic Therapy</subject><subject>Genetically modified organisms</subject><subject>Genome editing</subject><subject>Green fluorescent protein</subject><subject>Health aspects</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Intravenous administration</subject><subject>Mice</subject><subject>Monocyte chemoattractant protein 1</subject><subject>mRNA</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration & dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>original-article</subject><subject>Peptide nucleic acids</subject><subject>Peptide Nucleic Acids - administration & dosage</subject><subject>Peptide Nucleic Acids - chemistry</subject><subject>Peptide Nucleic Acids - genetics</subject><subject>Physiological aspects</subject><subject>Receptors, CCR5 - genetics</subject><subject>Rodents</subject><subject>Single-stranded DNA</subject><subject>Spleen</subject><subject>Stem cells</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kltrFDEUxwdRbK2--AEkIIgXZs1tksyLsNRboahYfQ7ZmTOzKTPJNsks3a_hJzZDa-2qSB5yOb_zz7kVxWOCFwQz9bpPC4oJXSh6pzgkXIqy4oLeLQ5xLepSEqoOigcxnmOMuVT0fnFAGZaCyfqw-HG2iwlG26AWBruFsEO-QynYzQCXZefDaF2PvnxaIuNa1HrnA3qbb6sdcsb5jQnJNgNENEJrTcqHaBOUcQON7bJqD86PgLIxzUJZez2NxqE1jCb5jbeQ_VEDwxCRdWhrt_5hca8zQ4RH1_tR8f39u2_HH8vTzx9OjpenZSMxSaVUXNGKMcHlilOKpcKUNwIL3rWkqqFpFJi2NqJZVVSJulO87YABM4ZJ0hl2VLy50t1Mqxx9Ay4FM-hNsKMJO-2N1fsWZ9e691ud3RlXLAs8vxYI_mKCmPRo45yKceCnqAmTFFc1ETP69A_03E_B5fQ0FZwLoajC_6MIExVRFZfyN9WbAbR1nc_RNfPXeskYF7gSlGdq8Q8qr3butnfQ2fy-5_BizyEzCS5Tb6YY9cnZ13322S12DWZI6-iHKVnv4j748gpsgo8xQHdTXoL1PLy6T3oeXq1ohp_cbsgN-mtaM_DqCojZ5HoIt-rzt9xPUJL2iQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>McNeer, N A</creator><creator>Schleifman, E B</creator><creator>Cuthbert, A</creator><creator>Brehm, M</creator><creator>Jackson, A</creator><creator>Cheng, C</creator><creator>Anandalingam, K</creator><creator>Kumar, P</creator><creator>Shultz, L D</creator><creator>Greiner, D L</creator><creator>Mark Saltzman, W</creator><creator>Glazer, P M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20130601</creationdate><title>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</title><author>McNeer, N A ; Schleifman, E B ; Cuthbert, A ; Brehm, M ; Jackson, A ; Cheng, C ; Anandalingam, K ; Kumar, P ; Shultz, L D ; Greiner, D L ; Mark Saltzman, W ; Glazer, P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c701t-78482533647b422078024c6064fd159ecc8ead9a6cb52869f84dfe3e3aa371fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/1647/2300</topic><topic>631/1647/350/354</topic><topic>692/700/565/201</topic><topic>Animals</topic><topic>Biodegradability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone marrow</topic><topic>CCR2 protein</topic><topic>CCR5 protein</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>DNA - administration & dosage</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Gene Expression</topic><topic>Gene Targeting</topic><topic>Gene Therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic aspects</topic><topic>Genetic Therapy</topic><topic>Genetically modified organisms</topic><topic>Genome editing</topic><topic>Green fluorescent protein</topic><topic>Health aspects</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Intravenous administration</topic><topic>Mice</topic><topic>Monocyte chemoattractant protein 1</topic><topic>mRNA</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration & dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>original-article</topic><topic>Peptide nucleic acids</topic><topic>Peptide Nucleic Acids - administration & dosage</topic><topic>Peptide Nucleic Acids - chemistry</topic><topic>Peptide Nucleic Acids - genetics</topic><topic>Physiological aspects</topic><topic>Receptors, CCR5 - genetics</topic><topic>Rodents</topic><topic>Single-stranded DNA</topic><topic>Spleen</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNeer, N A</creatorcontrib><creatorcontrib>Schleifman, E B</creatorcontrib><creatorcontrib>Cuthbert, A</creatorcontrib><creatorcontrib>Brehm, M</creatorcontrib><creatorcontrib>Jackson, A</creatorcontrib><creatorcontrib>Cheng, C</creatorcontrib><creatorcontrib>Anandalingam, K</creatorcontrib><creatorcontrib>Kumar, P</creatorcontrib><creatorcontrib>Shultz, L D</creatorcontrib><creatorcontrib>Greiner, D L</creatorcontrib><creatorcontrib>Mark Saltzman, W</creatorcontrib><creatorcontrib>Glazer, P M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNeer, N A</au><au>Schleifman, E B</au><au>Cuthbert, A</au><au>Brehm, M</au><au>Jackson, A</au><au>Cheng, C</au><au>Anandalingam, K</au><au>Kumar, P</au><au>Shultz, L D</au><au>Greiner, D L</au><au>Mark Saltzman, W</au><au>Glazer, P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>20</volume><issue>6</issue><spage>658</spage><epage>669</epage><pages>658-669</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>In vivo
delivery is a major barrier to the use of molecular tools for gene modification. Here we demonstrate site-specific gene editing of human cells
in vivo
in hematopoietic stem cell-engrafted NOD.Cg-
Prkdc
scid
IL2rγ
tm1Wjl
(abbreviated NOD-
scid IL2rγ
null
) mice, using biodegradable nanoparticles loaded with triplex-forming peptide nucleic acids (PNAs) and single-stranded donor DNA molecules.
In vitro
screening showed greater efficacy of nanoparticles containing PNAs/DNAs together over PNA-alone or DNA-alone. Intravenous injection of particles containing PNAs/DNAs produced modification of the human
CCR5
gene in hematolymphoid cells in the mice, with modification confirmed at the genomic DNA, mRNA and functional levels. Deep sequencing revealed
in vivo
modification of the
CCR5
gene at frequencies of 0.43% in hematopoietic cells in the spleen and 0.05% in the bone marrow: off-target modification in the partially homologous
CCR2
gene was two orders of magnitude lower. We also induced specific modification in the
β-globin
gene using nanoparticles carrying
β-globin
-targeted PNAs/DNAs, demonstrating this method’s versatility.
In vivo
testing in an enhanced green fluorescent protein-
β-globin
reporter mouse showed greater activity of nanoparticles containing PNAs/DNAs together over DNA only. Direct
in vivo
gene modification, such as we demonstrate here, would allow for gene therapy in systemic diseases or in cells that cannot be manipulated
ex vivo
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23076379</pmid><doi>10.1038/gt.2012.82</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2013-06, Vol.20 (6), p.658-669 |
issn | 0969-7128 1476-5462 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3713483 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals |
subjects | 631/1647/2300 631/1647/350/354 692/700/565/201 Animals Biodegradability Biomedical and Life Sciences Biomedicine Bone marrow CCR2 protein CCR5 protein Cell Biology Cell Line DNA - administration & dosage DNA - chemistry DNA - genetics Gene Expression Gene Targeting Gene Therapy Gene Transfer Techniques Genetic aspects Genetic Therapy Genetically modified organisms Genome editing Green fluorescent protein Health aspects Hematopoietic stem cells Hematopoietic Stem Cells - cytology Human Genetics Humans Intravenous administration Mice Monocyte chemoattractant protein 1 mRNA Nanoparticles Nanoparticles - administration & dosage Nanoparticles - chemistry Nanotechnology original-article Peptide nucleic acids Peptide Nucleic Acids - administration & dosage Peptide Nucleic Acids - chemistry Peptide Nucleic Acids - genetics Physiological aspects Receptors, CCR5 - genetics Rodents Single-stranded DNA Spleen Stem cells |
title | Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systemic%20delivery%20of%20triplex-forming%20PNA%20and%20donor%20DNA%20by%20nanoparticles%20mediates%20site-specific%20genome%20editing%20of%20human%20hematopoietic%20cells%20in%20vivo&rft.jtitle=Gene%20therapy&rft.au=McNeer,%20N%20A&rft.date=2013-06-01&rft.volume=20&rft.issue=6&rft.spage=658&rft.epage=669&rft.pages=658-669&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/gt.2012.82&rft_dat=%3Cgale_pubme%3EA334605624%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365185477&rft_id=info:pmid/23076379&rft_galeid=A334605624&rfr_iscdi=true |