Passenger deletions generate therapeutic vulnerabilities in cancer
Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2012-08, Vol.488 (7411), p.337-342 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 7411 |
container_start_page | 337 |
container_title | Nature (London) |
container_volume | 488 |
creator | Muller, Florian L. Colla, Simona Aquilanti, Elisa Manzo, Veronica E. Genovese, Giannicola Lee, Jaclyn Eisenson, Daniel Narurkar, Rujuta Deng, Pingna Nezi, Luigi Lee, Michelle A. Hu, Baoli Hu, Jian Sahin, Ergun Ong, Derrick Fletcher-Sananikone, Eliot Ho, Dennis Kwong, Lawrence Brennan, Cameron Wang, Y. Alan Chin, Lynda DePinho, Ronald A. |
description | Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (
ENO1
) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of
ENO2
. Here we show that short-hairpin-RNA-mediated silencing of
ENO2
selectively inhibits growth, survival and the tumorigenic potential of
ENO1
-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to
ENO1
-deleted GBM cells relative to
ENO1
-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.
The ‘collateral’ homozygous deletion of essential redundant housekeeping genes in cancer genomes is shown to confer therapeutic vulnerability on cancer cells with the deletion, without affecting genomically intact normal non-cancerous cells, suggesting new therapeutic opportunities.
A new type of anticancer target
This Article introduces the concept of 'collateral damage' in cancer genomes as a possible basis for therapeutic strategies. Ronald DePinho and colleagues examine pairs of functionally redundant 'passenger' genes with 'housekeeping' roles, for example in cellular metabolism. They hypothesize that genetic deletions in cancer that encompass one such gene (as collateral damage caused by proximity to tumour-suppressor genes) may expose a selective vulnerability of cancer cells, but not normal cells, to pharmacological inhibition of the protein encoded by the second gene. They demonstrate this concept for the glycolytic enzymes ENO1 and ENO2. There is often homozygous deletion of the
ENO1
gene on chromosome 1p36 in glioblastomas, which is shown here to render glioma cells sensitive to knockdown of
ENO2
or to a small-molecule enolase inhibitor. The authors further analyse existing cancer genomics data sets for other examples of pairs of redundant housekeeping genes, one of which resides close to frequently deleted tumour-suppressor genes. They suggest that this concept may |
doi_str_mv | 10.1038/nature11331 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3712624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A301555961</galeid><sourcerecordid>A301555961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c880t-1d0dc52bf08f0824ca0e8aa981d41c7c693b6be86d4c99b4447d13464b855623</originalsourceid><addsrcrecordid>eNqNk91rFDEQwBdR7Fl98l0WxQfRrfnabPIiXA8_CkVFD3wM2ezsNWUve02ypf735riz3cOrLQkEMr_8JgwzWfYcoyOMqHjvdBw8YEwpfpBNMKt4wbioHmYThIgokKD8IHsSwjlCqMQVe5wdECJkSamcZMffdQjgFuDzBjqItnchX4ADryPk8SydKxiiNfnl0K1va9vZaCHk1uVGOwP-afao1V2AZ9vzMJt_-jiffSlOv30-mU1PCyMEigVuUGNKUrdIpE2Y0QiE1lLghmFTGS5pzWsQvGFGypoxVjWYMs5qUZac0MPsw0a7GuolNAZc9LpTK2-X2v9WvbZqN-LsmVr0l4pWmHDCkuDVVuD7iwFCVOf94F36skp1LImskEQ31EJ3oKxr-yQzSxuMmnLOmGSCyv9SFOGyLCXHiSr2UJvqdr2D1qbrHet9-LH_5R7erOyFGktvhcamoz1QWg0srdn71Xs9GGd4s_MgMRGu4kIPIaiTnz925XexY-_b29np_Nfs6675bnqP2_g-BA_tdbdhtO4ZoUazl-gX4wa9Zv8OWwJebwEdjO5an8bHhhuOE4JwtebebbiQQuvRHDfqv3n_ACpFPcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035297090</pqid></control><display><type>article</type><title>Passenger deletions generate therapeutic vulnerabilities in cancer</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Muller, Florian L. ; Colla, Simona ; Aquilanti, Elisa ; Manzo, Veronica E. ; Genovese, Giannicola ; Lee, Jaclyn ; Eisenson, Daniel ; Narurkar, Rujuta ; Deng, Pingna ; Nezi, Luigi ; Lee, Michelle A. ; Hu, Baoli ; Hu, Jian ; Sahin, Ergun ; Ong, Derrick ; Fletcher-Sananikone, Eliot ; Ho, Dennis ; Kwong, Lawrence ; Brennan, Cameron ; Wang, Y. Alan ; Chin, Lynda ; DePinho, Ronald A.</creator><creatorcontrib>Muller, Florian L. ; Colla, Simona ; Aquilanti, Elisa ; Manzo, Veronica E. ; Genovese, Giannicola ; Lee, Jaclyn ; Eisenson, Daniel ; Narurkar, Rujuta ; Deng, Pingna ; Nezi, Luigi ; Lee, Michelle A. ; Hu, Baoli ; Hu, Jian ; Sahin, Ergun ; Ong, Derrick ; Fletcher-Sananikone, Eliot ; Ho, Dennis ; Kwong, Lawrence ; Brennan, Cameron ; Wang, Y. Alan ; Chin, Lynda ; DePinho, Ronald A.</creatorcontrib><description>Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (
ENO1
) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of
ENO2
. Here we show that short-hairpin-RNA-mediated silencing of
ENO2
selectively inhibits growth, survival and the tumorigenic potential of
ENO1
-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to
ENO1
-deleted GBM cells relative to
ENO1
-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.
The ‘collateral’ homozygous deletion of essential redundant housekeeping genes in cancer genomes is shown to confer therapeutic vulnerability on cancer cells with the deletion, without affecting genomically intact normal non-cancerous cells, suggesting new therapeutic opportunities.
A new type of anticancer target
This Article introduces the concept of 'collateral damage' in cancer genomes as a possible basis for therapeutic strategies. Ronald DePinho and colleagues examine pairs of functionally redundant 'passenger' genes with 'housekeeping' roles, for example in cellular metabolism. They hypothesize that genetic deletions in cancer that encompass one such gene (as collateral damage caused by proximity to tumour-suppressor genes) may expose a selective vulnerability of cancer cells, but not normal cells, to pharmacological inhibition of the protein encoded by the second gene. They demonstrate this concept for the glycolytic enzymes ENO1 and ENO2. There is often homozygous deletion of the
ENO1
gene on chromosome 1p36 in glioblastomas, which is shown here to render glioma cells sensitive to knockdown of
ENO2
or to a small-molecule enolase inhibitor. The authors further analyse existing cancer genomics data sets for other examples of pairs of redundant housekeeping genes, one of which resides close to frequently deleted tumour-suppressor genes. They suggest that this concept may be generally applicable and could offer new therapeutic opportunities.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature11331</identifier><identifier>PMID: 22895339</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/68 ; 692/699/67/1059 ; Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Biological and medical sciences ; Biomarkers, Tumor - deficiency ; Biomarkers, Tumor - genetics ; Brain Neoplasms - drug therapy ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Cancer ; Care and treatment ; Cell Line, Tumor ; Cell Proliferation ; Chromosomes, Human, Pair 1 - genetics ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; Enzyme Inhibitors ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Gene mutations ; Genes ; Genes, Essential - genetics ; Genes, Tumor Suppressor ; Genetic aspects ; Genetics ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - pathology ; Health aspects ; Homozygote ; Humanities and Social Sciences ; Humans ; Hydroxamic Acids - pharmacology ; Hydroxamic Acids - therapeutic use ; Inactivation ; Kinases ; Medical sciences ; Mice ; Molecular Targeted Therapy - methods ; multidisciplinary ; Multiple tumors. Solid tumors. Tumors in childhood (general aspects) ; Neoplasm Transplantation ; Oncology, Experimental ; Phosphonoacetic Acid - analogs & derivatives ; Phosphonoacetic Acid - pharmacology ; Phosphonoacetic Acid - therapeutic use ; Phosphopyruvate Hydratase - antagonists & inhibitors ; Phosphopyruvate Hydratase - deficiency ; Phosphopyruvate Hydratase - genetics ; Phosphopyruvate Hydratase - metabolism ; Physiological aspects ; Proteins ; Risk factors ; RNA, Small Interfering - genetics ; Science ; Science (multidisciplinary) ; Sequence Deletion - genetics ; Tumor suppressor genes ; Tumor Suppressor Proteins - deficiency ; Tumor Suppressor Proteins - genetics ; Tumors</subject><ispartof>Nature (London), 2012-08, Vol.488 (7411), p.337-342</ispartof><rights>Springer Nature Limited 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 16, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c880t-1d0dc52bf08f0824ca0e8aa981d41c7c693b6be86d4c99b4447d13464b855623</citedby><cites>FETCH-LOGICAL-c880t-1d0dc52bf08f0824ca0e8aa981d41c7c693b6be86d4c99b4447d13464b855623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature11331$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature11331$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26220179$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22895339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muller, Florian L.</creatorcontrib><creatorcontrib>Colla, Simona</creatorcontrib><creatorcontrib>Aquilanti, Elisa</creatorcontrib><creatorcontrib>Manzo, Veronica E.</creatorcontrib><creatorcontrib>Genovese, Giannicola</creatorcontrib><creatorcontrib>Lee, Jaclyn</creatorcontrib><creatorcontrib>Eisenson, Daniel</creatorcontrib><creatorcontrib>Narurkar, Rujuta</creatorcontrib><creatorcontrib>Deng, Pingna</creatorcontrib><creatorcontrib>Nezi, Luigi</creatorcontrib><creatorcontrib>Lee, Michelle A.</creatorcontrib><creatorcontrib>Hu, Baoli</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Sahin, Ergun</creatorcontrib><creatorcontrib>Ong, Derrick</creatorcontrib><creatorcontrib>Fletcher-Sananikone, Eliot</creatorcontrib><creatorcontrib>Ho, Dennis</creatorcontrib><creatorcontrib>Kwong, Lawrence</creatorcontrib><creatorcontrib>Brennan, Cameron</creatorcontrib><creatorcontrib>Wang, Y. Alan</creatorcontrib><creatorcontrib>Chin, Lynda</creatorcontrib><creatorcontrib>DePinho, Ronald A.</creatorcontrib><title>Passenger deletions generate therapeutic vulnerabilities in cancer</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (
ENO1
) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of
ENO2
. Here we show that short-hairpin-RNA-mediated silencing of
ENO2
selectively inhibits growth, survival and the tumorigenic potential of
ENO1
-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to
ENO1
-deleted GBM cells relative to
ENO1
-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.
The ‘collateral’ homozygous deletion of essential redundant housekeeping genes in cancer genomes is shown to confer therapeutic vulnerability on cancer cells with the deletion, without affecting genomically intact normal non-cancerous cells, suggesting new therapeutic opportunities.
A new type of anticancer target
This Article introduces the concept of 'collateral damage' in cancer genomes as a possible basis for therapeutic strategies. Ronald DePinho and colleagues examine pairs of functionally redundant 'passenger' genes with 'housekeeping' roles, for example in cellular metabolism. They hypothesize that genetic deletions in cancer that encompass one such gene (as collateral damage caused by proximity to tumour-suppressor genes) may expose a selective vulnerability of cancer cells, but not normal cells, to pharmacological inhibition of the protein encoded by the second gene. They demonstrate this concept for the glycolytic enzymes ENO1 and ENO2. There is often homozygous deletion of the
ENO1
gene on chromosome 1p36 in glioblastomas, which is shown here to render glioma cells sensitive to knockdown of
ENO2
or to a small-molecule enolase inhibitor. The authors further analyse existing cancer genomics data sets for other examples of pairs of redundant housekeeping genes, one of which resides close to frequently deleted tumour-suppressor genes. They suggest that this concept may be generally applicable and could offer new therapeutic opportunities.</description><subject>631/67/68</subject><subject>692/699/67/1059</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Biomarkers, Tumor - deficiency</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Chromosomes, Human, Pair 1 - genetics</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Enzyme Inhibitors</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Knockdown Techniques</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genes, Essential - genetics</subject><subject>Genes, Tumor Suppressor</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - pathology</subject><subject>Health aspects</subject><subject>Homozygote</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Hydroxamic Acids - therapeutic use</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Molecular Targeted Therapy - methods</subject><subject>multidisciplinary</subject><subject>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</subject><subject>Neoplasm Transplantation</subject><subject>Oncology, Experimental</subject><subject>Phosphonoacetic Acid - analogs & derivatives</subject><subject>Phosphonoacetic Acid - pharmacology</subject><subject>Phosphonoacetic Acid - therapeutic use</subject><subject>Phosphopyruvate Hydratase - antagonists & inhibitors</subject><subject>Phosphopyruvate Hydratase - deficiency</subject><subject>Phosphopyruvate Hydratase - genetics</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>RNA, Small Interfering - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Deletion - genetics</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Proteins - deficiency</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNk91rFDEQwBdR7Fl98l0WxQfRrfnabPIiXA8_CkVFD3wM2ezsNWUve02ypf735riz3cOrLQkEMr_8JgwzWfYcoyOMqHjvdBw8YEwpfpBNMKt4wbioHmYThIgokKD8IHsSwjlCqMQVe5wdECJkSamcZMffdQjgFuDzBjqItnchX4ADryPk8SydKxiiNfnl0K1va9vZaCHk1uVGOwP-afao1V2AZ9vzMJt_-jiffSlOv30-mU1PCyMEigVuUGNKUrdIpE2Y0QiE1lLghmFTGS5pzWsQvGFGypoxVjWYMs5qUZac0MPsw0a7GuolNAZc9LpTK2-X2v9WvbZqN-LsmVr0l4pWmHDCkuDVVuD7iwFCVOf94F36skp1LImskEQ31EJ3oKxr-yQzSxuMmnLOmGSCyv9SFOGyLCXHiSr2UJvqdr2D1qbrHet9-LH_5R7erOyFGktvhcamoz1QWg0srdn71Xs9GGd4s_MgMRGu4kIPIaiTnz925XexY-_b29np_Nfs6675bnqP2_g-BA_tdbdhtO4ZoUazl-gX4wa9Zv8OWwJebwEdjO5an8bHhhuOE4JwtebebbiQQuvRHDfqv3n_ACpFPcA</recordid><startdate>20120816</startdate><enddate>20120816</enddate><creator>Muller, Florian L.</creator><creator>Colla, Simona</creator><creator>Aquilanti, Elisa</creator><creator>Manzo, Veronica E.</creator><creator>Genovese, Giannicola</creator><creator>Lee, Jaclyn</creator><creator>Eisenson, Daniel</creator><creator>Narurkar, Rujuta</creator><creator>Deng, Pingna</creator><creator>Nezi, Luigi</creator><creator>Lee, Michelle A.</creator><creator>Hu, Baoli</creator><creator>Hu, Jian</creator><creator>Sahin, Ergun</creator><creator>Ong, Derrick</creator><creator>Fletcher-Sananikone, Eliot</creator><creator>Ho, Dennis</creator><creator>Kwong, Lawrence</creator><creator>Brennan, Cameron</creator><creator>Wang, Y. Alan</creator><creator>Chin, Lynda</creator><creator>DePinho, Ronald A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20120816</creationdate><title>Passenger deletions generate therapeutic vulnerabilities in cancer</title><author>Muller, Florian L. ; Colla, Simona ; Aquilanti, Elisa ; Manzo, Veronica E. ; Genovese, Giannicola ; Lee, Jaclyn ; Eisenson, Daniel ; Narurkar, Rujuta ; Deng, Pingna ; Nezi, Luigi ; Lee, Michelle A. ; Hu, Baoli ; Hu, Jian ; Sahin, Ergun ; Ong, Derrick ; Fletcher-Sananikone, Eliot ; Ho, Dennis ; Kwong, Lawrence ; Brennan, Cameron ; Wang, Y. Alan ; Chin, Lynda ; DePinho, Ronald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c880t-1d0dc52bf08f0824ca0e8aa981d41c7c693b6be86d4c99b4447d13464b855623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/67/68</topic><topic>692/699/67/1059</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Biomarkers, Tumor - deficiency</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Chromosomes, Human, Pair 1 - genetics</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Enzyme Inhibitors</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Knockdown Techniques</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genes, Essential - genetics</topic><topic>Genes, Tumor Suppressor</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - pathology</topic><topic>Health aspects</topic><topic>Homozygote</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Hydroxamic Acids - therapeutic use</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Molecular Targeted Therapy - methods</topic><topic>multidisciplinary</topic><topic>Multiple tumors. Solid tumors. Tumors in childhood (general aspects)</topic><topic>Neoplasm Transplantation</topic><topic>Oncology, Experimental</topic><topic>Phosphonoacetic Acid - analogs & derivatives</topic><topic>Phosphonoacetic Acid - pharmacology</topic><topic>Phosphonoacetic Acid - therapeutic use</topic><topic>Phosphopyruvate Hydratase - antagonists & inhibitors</topic><topic>Phosphopyruvate Hydratase - deficiency</topic><topic>Phosphopyruvate Hydratase - genetics</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>RNA, Small Interfering - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Deletion - genetics</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Proteins - deficiency</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, Florian L.</creatorcontrib><creatorcontrib>Colla, Simona</creatorcontrib><creatorcontrib>Aquilanti, Elisa</creatorcontrib><creatorcontrib>Manzo, Veronica E.</creatorcontrib><creatorcontrib>Genovese, Giannicola</creatorcontrib><creatorcontrib>Lee, Jaclyn</creatorcontrib><creatorcontrib>Eisenson, Daniel</creatorcontrib><creatorcontrib>Narurkar, Rujuta</creatorcontrib><creatorcontrib>Deng, Pingna</creatorcontrib><creatorcontrib>Nezi, Luigi</creatorcontrib><creatorcontrib>Lee, Michelle A.</creatorcontrib><creatorcontrib>Hu, Baoli</creatorcontrib><creatorcontrib>Hu, Jian</creatorcontrib><creatorcontrib>Sahin, Ergun</creatorcontrib><creatorcontrib>Ong, Derrick</creatorcontrib><creatorcontrib>Fletcher-Sananikone, Eliot</creatorcontrib><creatorcontrib>Ho, Dennis</creatorcontrib><creatorcontrib>Kwong, Lawrence</creatorcontrib><creatorcontrib>Brennan, Cameron</creatorcontrib><creatorcontrib>Wang, Y. Alan</creatorcontrib><creatorcontrib>Chin, Lynda</creatorcontrib><creatorcontrib>DePinho, Ronald A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, Florian L.</au><au>Colla, Simona</au><au>Aquilanti, Elisa</au><au>Manzo, Veronica E.</au><au>Genovese, Giannicola</au><au>Lee, Jaclyn</au><au>Eisenson, Daniel</au><au>Narurkar, Rujuta</au><au>Deng, Pingna</au><au>Nezi, Luigi</au><au>Lee, Michelle A.</au><au>Hu, Baoli</au><au>Hu, Jian</au><au>Sahin, Ergun</au><au>Ong, Derrick</au><au>Fletcher-Sananikone, Eliot</au><au>Ho, Dennis</au><au>Kwong, Lawrence</au><au>Brennan, Cameron</au><au>Wang, Y. Alan</au><au>Chin, Lynda</au><au>DePinho, Ronald A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passenger deletions generate therapeutic vulnerabilities in cancer</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2012-08-16</date><risdate>2012</risdate><volume>488</volume><issue>7411</issue><spage>337</spage><epage>342</epage><pages>337-342</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (
ENO1
) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of
ENO2
. Here we show that short-hairpin-RNA-mediated silencing of
ENO2
selectively inhibits growth, survival and the tumorigenic potential of
ENO1
-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to
ENO1
-deleted GBM cells relative to
ENO1
-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.
The ‘collateral’ homozygous deletion of essential redundant housekeeping genes in cancer genomes is shown to confer therapeutic vulnerability on cancer cells with the deletion, without affecting genomically intact normal non-cancerous cells, suggesting new therapeutic opportunities.
A new type of anticancer target
This Article introduces the concept of 'collateral damage' in cancer genomes as a possible basis for therapeutic strategies. Ronald DePinho and colleagues examine pairs of functionally redundant 'passenger' genes with 'housekeeping' roles, for example in cellular metabolism. They hypothesize that genetic deletions in cancer that encompass one such gene (as collateral damage caused by proximity to tumour-suppressor genes) may expose a selective vulnerability of cancer cells, but not normal cells, to pharmacological inhibition of the protein encoded by the second gene. They demonstrate this concept for the glycolytic enzymes ENO1 and ENO2. There is often homozygous deletion of the
ENO1
gene on chromosome 1p36 in glioblastomas, which is shown here to render glioma cells sensitive to knockdown of
ENO2
or to a small-molecule enolase inhibitor. The authors further analyse existing cancer genomics data sets for other examples of pairs of redundant housekeeping genes, one of which resides close to frequently deleted tumour-suppressor genes. They suggest that this concept may be generally applicable and could offer new therapeutic opportunities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22895339</pmid><doi>10.1038/nature11331</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2012-08, Vol.488 (7411), p.337-342 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3712624 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/67/68 692/699/67/1059 Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Biological and medical sciences Biomarkers, Tumor - deficiency Biomarkers, Tumor - genetics Brain Neoplasms - drug therapy Brain Neoplasms - genetics Brain Neoplasms - pathology Cancer Care and treatment Cell Line, Tumor Cell Proliferation Chromosomes, Human, Pair 1 - genetics DNA-Binding Proteins - deficiency DNA-Binding Proteins - genetics Enzyme Inhibitors Gene Expression Regulation, Neoplastic Gene Knockdown Techniques Gene mutations Genes Genes, Essential - genetics Genes, Tumor Suppressor Genetic aspects Genetics Glioblastoma - drug therapy Glioblastoma - genetics Glioblastoma - pathology Health aspects Homozygote Humanities and Social Sciences Humans Hydroxamic Acids - pharmacology Hydroxamic Acids - therapeutic use Inactivation Kinases Medical sciences Mice Molecular Targeted Therapy - methods multidisciplinary Multiple tumors. Solid tumors. Tumors in childhood (general aspects) Neoplasm Transplantation Oncology, Experimental Phosphonoacetic Acid - analogs & derivatives Phosphonoacetic Acid - pharmacology Phosphonoacetic Acid - therapeutic use Phosphopyruvate Hydratase - antagonists & inhibitors Phosphopyruvate Hydratase - deficiency Phosphopyruvate Hydratase - genetics Phosphopyruvate Hydratase - metabolism Physiological aspects Proteins Risk factors RNA, Small Interfering - genetics Science Science (multidisciplinary) Sequence Deletion - genetics Tumor suppressor genes Tumor Suppressor Proteins - deficiency Tumor Suppressor Proteins - genetics Tumors |
title | Passenger deletions generate therapeutic vulnerabilities in cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passenger%20deletions%20generate%20therapeutic%20vulnerabilities%20in%20cancer&rft.jtitle=Nature%20(London)&rft.au=Muller,%20Florian%20L.&rft.date=2012-08-16&rft.volume=488&rft.issue=7411&rft.spage=337&rft.epage=342&rft.pages=337-342&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature11331&rft_dat=%3Cgale_pubme%3EA301555961%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035297090&rft_id=info:pmid/22895339&rft_galeid=A301555961&rfr_iscdi=true |