Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons

Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-01, Vol.33 (2), p.709-721
Hauptverfasser: Fu, Xiaoqin, Brown, Kristy J, Yap, Chan Choo, Winckler, Bettina, Jaiswal, Jyoti K, Liu, Judy S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 2
container_start_page 709
container_title The Journal of neuroscience
container_volume 33
creator Fu, Xiaoqin
Brown, Kristy J
Yap, Chan Choo
Winckler, Bettina
Jaiswal, Jyoti K
Liu, Judy S
description Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.
doi_str_mv 10.1523/JNEUROSCI.4603-12.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3711551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273392018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-53d96e32e747b378325eb6811131c18e4dbb9b3b546a4ccb882d60cf48cb4f573</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EosvCV6hyLIcstseJkwsS2v6hqGoloEdk2c5kMXLixU4q-u3rqGUFp55Go3lv9J5-hBwzumEVhw9frs9uv958215uRE2hZHzDKYMXZJWvbckFZS_JinJJy1pIcUTepPSLUiopk6_JEQeg0Ip2RX6chtl4tCFObixOTu2f90WvB-fvi30ME7oxFRF3s9cTFr3zesBxCnMqtF0MaYqzneaIRV46vEMf9m7cFSPOMYzpLXnVa5_w3dNck9vzs-_bz-XVzcXl9tNVaSsGU1lB19YIHKWQBmQDvEJTN4wxYJY1KDpjWgOmErUW1pqm4V1NbS8aa0RfSViTj49_97MZsLM5Y9Re7aMbdLxXQTv1_2V0P9Uu3CmQjFU5w5qcPD2I4feMaVKDSxa91yPmtmoR1cBEK5-XcgnQZhpNltaPUhtDShH7QyJG1YJRHTCqBWP2qgVjNh7_2-dg-8sNHgDfOZvp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273392018</pqid></control><display><type>article</type><title>Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fu, Xiaoqin ; Brown, Kristy J ; Yap, Chan Choo ; Winckler, Bettina ; Jaiswal, Jyoti K ; Liu, Judy S</creator><creatorcontrib>Fu, Xiaoqin ; Brown, Kristy J ; Yap, Chan Choo ; Winckler, Bettina ; Jaiswal, Jyoti K ; Liu, Judy S</creatorcontrib><description>Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.4603-12.2013</identifier><identifier>PMID: 23303949</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Actin-Related Protein 3 - metabolism ; Actinin - metabolism ; Actins - metabolism ; Actins - physiology ; Animals ; Axons - physiology ; Blotting, Western ; Cells, Cultured ; Corpus Callosum - cytology ; Corpus Callosum - growth &amp; development ; Corpus Callosum - physiology ; Databases, Factual ; Electrophoresis, Polyacrylamide Gel ; Female ; Immunohistochemistry ; Male ; Mass Spectrometry ; Mice ; Mice, Knockout ; Microfilament Proteins - metabolism ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Microtubule-Associated Proteins - physiology ; Mutation - physiology ; Nerve Tissue Proteins - metabolism ; Neurofilament Proteins - physiology ; Neurons - metabolism ; Neurons - physiology ; Neuropeptides - genetics ; Neuropeptides - physiology ; Proteomics</subject><ispartof>The Journal of neuroscience, 2013-01, Vol.33 (2), p.709-721</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/330709-13$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-53d96e32e747b378325eb6811131c18e4dbb9b3b546a4ccb882d60cf48cb4f573</citedby><cites>FETCH-LOGICAL-c513t-53d96e32e747b378325eb6811131c18e4dbb9b3b546a4ccb882d60cf48cb4f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711551/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711551/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23303949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Xiaoqin</creatorcontrib><creatorcontrib>Brown, Kristy J</creatorcontrib><creatorcontrib>Yap, Chan Choo</creatorcontrib><creatorcontrib>Winckler, Bettina</creatorcontrib><creatorcontrib>Jaiswal, Jyoti K</creatorcontrib><creatorcontrib>Liu, Judy S</creatorcontrib><title>Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.</description><subject>Actin-Related Protein 3 - metabolism</subject><subject>Actinin - metabolism</subject><subject>Actins - metabolism</subject><subject>Actins - physiology</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Blotting, Western</subject><subject>Cells, Cultured</subject><subject>Corpus Callosum - cytology</subject><subject>Corpus Callosum - growth &amp; development</subject><subject>Corpus Callosum - physiology</subject><subject>Databases, Factual</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Female</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Mass Spectrometry</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microfilament Proteins - metabolism</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubule-Associated Proteins - physiology</subject><subject>Mutation - physiology</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurofilament Proteins - physiology</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - physiology</subject><subject>Proteomics</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EosvCV6hyLIcstseJkwsS2v6hqGoloEdk2c5kMXLixU4q-u3rqGUFp55Go3lv9J5-hBwzumEVhw9frs9uv958215uRE2hZHzDKYMXZJWvbckFZS_JinJJy1pIcUTepPSLUiopk6_JEQeg0Ip2RX6chtl4tCFObixOTu2f90WvB-fvi30ME7oxFRF3s9cTFr3zesBxCnMqtF0MaYqzneaIRV46vEMf9m7cFSPOMYzpLXnVa5_w3dNck9vzs-_bz-XVzcXl9tNVaSsGU1lB19YIHKWQBmQDvEJTN4wxYJY1KDpjWgOmErUW1pqm4V1NbS8aa0RfSViTj49_97MZsLM5Y9Re7aMbdLxXQTv1_2V0P9Uu3CmQjFU5w5qcPD2I4feMaVKDSxa91yPmtmoR1cBEK5-XcgnQZhpNltaPUhtDShH7QyJG1YJRHTCqBWP2qgVjNh7_2-dg-8sNHgDfOZvp</recordid><startdate>20130109</startdate><enddate>20130109</enddate><creator>Fu, Xiaoqin</creator><creator>Brown, Kristy J</creator><creator>Yap, Chan Choo</creator><creator>Winckler, Bettina</creator><creator>Jaiswal, Jyoti K</creator><creator>Liu, Judy S</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20130109</creationdate><title>Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons</title><author>Fu, Xiaoqin ; Brown, Kristy J ; Yap, Chan Choo ; Winckler, Bettina ; Jaiswal, Jyoti K ; Liu, Judy S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-53d96e32e747b378325eb6811131c18e4dbb9b3b546a4ccb882d60cf48cb4f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actin-Related Protein 3 - metabolism</topic><topic>Actinin - metabolism</topic><topic>Actins - metabolism</topic><topic>Actins - physiology</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Blotting, Western</topic><topic>Cells, Cultured</topic><topic>Corpus Callosum - cytology</topic><topic>Corpus Callosum - growth &amp; development</topic><topic>Corpus Callosum - physiology</topic><topic>Databases, Factual</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Female</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Mass Spectrometry</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microfilament Proteins - metabolism</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubule-Associated Proteins - physiology</topic><topic>Mutation - physiology</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurofilament Proteins - physiology</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - physiology</topic><topic>Proteomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xiaoqin</creatorcontrib><creatorcontrib>Brown, Kristy J</creatorcontrib><creatorcontrib>Yap, Chan Choo</creatorcontrib><creatorcontrib>Winckler, Bettina</creatorcontrib><creatorcontrib>Jaiswal, Jyoti K</creatorcontrib><creatorcontrib>Liu, Judy S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xiaoqin</au><au>Brown, Kristy J</au><au>Yap, Chan Choo</au><au>Winckler, Bettina</au><au>Jaiswal, Jyoti K</au><au>Liu, Judy S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-01-09</date><risdate>2013</risdate><volume>33</volume><issue>2</issue><spage>709</spage><epage>721</epage><pages>709-721</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>23303949</pmid><doi>10.1523/JNEUROSCI.4603-12.2013</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-01, Vol.33 (2), p.709-721
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3711551
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Actin-Related Protein 3 - metabolism
Actinin - metabolism
Actins - metabolism
Actins - physiology
Animals
Axons - physiology
Blotting, Western
Cells, Cultured
Corpus Callosum - cytology
Corpus Callosum - growth & development
Corpus Callosum - physiology
Databases, Factual
Electrophoresis, Polyacrylamide Gel
Female
Immunohistochemistry
Male
Mass Spectrometry
Mice
Mice, Knockout
Microfilament Proteins - metabolism
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Microtubule-Associated Proteins - physiology
Mutation - physiology
Nerve Tissue Proteins - metabolism
Neurofilament Proteins - physiology
Neurons - metabolism
Neurons - physiology
Neuropeptides - genetics
Neuropeptides - physiology
Proteomics
title Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doublecortin%20(Dcx)%20family%20proteins%20regulate%20filamentous%20actin%20structure%20in%20developing%20neurons&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Fu,%20Xiaoqin&rft.date=2013-01-09&rft.volume=33&rft.issue=2&rft.spage=709&rft.epage=721&rft.pages=709-721&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.4603-12.2013&rft_dat=%3Cproquest_pubme%3E1273392018%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273392018&rft_id=info:pmid/23303949&rfr_iscdi=true