Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

The NLRP3 inflammasome is primarily known for producing inflammatory cytokines and inducing pyroptosis. Stuart and colleagues identify an additional role for NLRP3 in driving down the pH of phagosomes. Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature immunology 2013-06, Vol.14 (6), p.543-553
Hauptverfasser: Sokolovska, Anna, Becker, Christine E, Ip, W K Eddie, Rathinam, Vijay A K, Brudner, Matthew, Paquette, Nicholas, Tanne, Antoine, Vanaja, Sivapriya K, Moore, Kathryn J, Fitzgerald, Katherine A, Lacy-Hulbert, Adam, Stuart, Lynda M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 6
container_start_page 543
container_title Nature immunology
container_volume 14
creator Sokolovska, Anna
Becker, Christine E
Ip, W K Eddie
Rathinam, Vijay A K
Brudner, Matthew
Paquette, Nicholas
Tanne, Antoine
Vanaja, Sivapriya K
Moore, Kathryn J
Fitzgerald, Katherine A
Lacy-Hulbert, Adam
Stuart, Lynda M
description The NLRP3 inflammasome is primarily known for producing inflammatory cytokines and inducing pyroptosis. Stuart and colleagues identify an additional role for NLRP3 in driving down the pH of phagosomes. Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.
doi_str_mv 10.1038/ni.2595
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3708594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332656071</galeid><sourcerecordid>A332656071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-515d9e07cd4ed325343ba2d0accd3b87da63f794c16d7e96503de4b872fdaf5c3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoh8g_gGyxAE4ZPFnvLlUWpVCK63aqoDEzfLa46yrJA5xUrX_Hoct227FAflgy_PMO-PXk2VvCJ4RzOafWj-johTPsn0iaJnTkhTPt2c838sOYrzGmHBZ8JfZHmUF5wKL_axbmMHf6MGHFgWHjI6djpATtLpDwxrQ-fLqkiHfulo3jY6hAdRDNdZ6gLgBFp8vT1G49TblofOLnxQNAZnQDn2oUbfWVfiT5cbWTFVeZS-criO8vt8Psx9fTr4fn-bLi69nx4tlbgqGh1wQYUvA0lgOllHBOFtparE2xrLVXFpdMCdLbkhhJZSFwMwCTwHqrHbCsMPsaKPbjasGrIHUkK5V1_tG93cqaK92I61fqyrcKCbxXJQ8CXy4F-jDrxHioBofDdS1biGMUREmKRapLvsPNPUvS0xlQt89Qa_D2LfJiYniWHAiyweq0jWo5H5ILZpJVC0Yo4UosCSJmv2DSstC49MPgPPpfifh407C9EtwO1R6jFGdfbvaZd9vWNOHGHtwW-sIVtPMJcPUNHOJfPvY6S33d8ge7Ikp1FbQP3rzE63fCRzcaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354054179</pqid></control><display><type>article</type><title>Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Sokolovska, Anna ; Becker, Christine E ; Ip, W K Eddie ; Rathinam, Vijay A K ; Brudner, Matthew ; Paquette, Nicholas ; Tanne, Antoine ; Vanaja, Sivapriya K ; Moore, Kathryn J ; Fitzgerald, Katherine A ; Lacy-Hulbert, Adam ; Stuart, Lynda M</creator><creatorcontrib>Sokolovska, Anna ; Becker, Christine E ; Ip, W K Eddie ; Rathinam, Vijay A K ; Brudner, Matthew ; Paquette, Nicholas ; Tanne, Antoine ; Vanaja, Sivapriya K ; Moore, Kathryn J ; Fitzgerald, Katherine A ; Lacy-Hulbert, Adam ; Stuart, Lynda M</creatorcontrib><description>The NLRP3 inflammasome is primarily known for producing inflammatory cytokines and inducing pyroptosis. Stuart and colleagues identify an additional role for NLRP3 in driving down the pH of phagosomes. Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.</description><identifier>ISSN: 1529-2908</identifier><identifier>EISSN: 1529-2916</identifier><identifier>DOI: 10.1038/ni.2595</identifier><identifier>PMID: 23644505</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/262 ; Acidification ; Animals ; Bacteria ; Biomedicine ; Carrier Proteins - immunology ; Carrier Proteins - metabolism ; Caspase 1 - immunology ; Caspase 1 - metabolism ; Cells, Cultured ; Enzyme Activation - immunology ; Flow Cytometry ; Genetic aspects ; Health aspects ; HEK293 Cells ; Host-Pathogen Interactions - immunology ; Humans ; Hydrogen-Ion Concentration ; Immunoblotting ; Immunology ; Infectious Diseases ; Inflammasomes - immunology ; Inflammasomes - metabolism ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages - microbiology ; Membrane Glycoproteins - immunology ; Membrane Glycoproteins - metabolism ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Microscopy, Confocal ; Microscopy, Electron ; NADPH Oxidase 2 ; NADPH Oxidases - immunology ; NADPH Oxidases - metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein ; Oxidases ; Phagocytosis - immunology ; Phagosomes ; Phagosomes - immunology ; Phagosomes - metabolism ; Phagosomes - microbiology ; Phagosomes - ultrastructure ; Physiological aspects ; Reactive Oxygen Species - immunology ; Reactive Oxygen Species - metabolism ; Staphylococcus aureus - immunology ; Staphylococcus aureus - physiology</subject><ispartof>Nature immunology, 2013-06, Vol.14 (6), p.543-553</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-515d9e07cd4ed325343ba2d0accd3b87da63f794c16d7e96503de4b872fdaf5c3</citedby><cites>FETCH-LOGICAL-c630t-515d9e07cd4ed325343ba2d0accd3b87da63f794c16d7e96503de4b872fdaf5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ni.2595$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ni.2595$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23644505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokolovska, Anna</creatorcontrib><creatorcontrib>Becker, Christine E</creatorcontrib><creatorcontrib>Ip, W K Eddie</creatorcontrib><creatorcontrib>Rathinam, Vijay A K</creatorcontrib><creatorcontrib>Brudner, Matthew</creatorcontrib><creatorcontrib>Paquette, Nicholas</creatorcontrib><creatorcontrib>Tanne, Antoine</creatorcontrib><creatorcontrib>Vanaja, Sivapriya K</creatorcontrib><creatorcontrib>Moore, Kathryn J</creatorcontrib><creatorcontrib>Fitzgerald, Katherine A</creatorcontrib><creatorcontrib>Lacy-Hulbert, Adam</creatorcontrib><creatorcontrib>Stuart, Lynda M</creatorcontrib><title>Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function</title><title>Nature immunology</title><addtitle>Nat Immunol</addtitle><addtitle>Nat Immunol</addtitle><description>The NLRP3 inflammasome is primarily known for producing inflammatory cytokines and inducing pyroptosis. Stuart and colleagues identify an additional role for NLRP3 in driving down the pH of phagosomes. Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.</description><subject>631/250/262</subject><subject>Acidification</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Biomedicine</subject><subject>Carrier Proteins - immunology</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspase 1 - immunology</subject><subject>Caspase 1 - metabolism</subject><subject>Cells, Cultured</subject><subject>Enzyme Activation - immunology</subject><subject>Flow Cytometry</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immunoblotting</subject><subject>Immunology</subject><subject>Infectious Diseases</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Membrane Glycoproteins - immunology</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidases - immunology</subject><subject>NADPH Oxidases - metabolism</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein</subject><subject>Oxidases</subject><subject>Phagocytosis - immunology</subject><subject>Phagosomes</subject><subject>Phagosomes - immunology</subject><subject>Phagosomes - metabolism</subject><subject>Phagosomes - microbiology</subject><subject>Phagosomes - ultrastructure</subject><subject>Physiological aspects</subject><subject>Reactive Oxygen Species - immunology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Staphylococcus aureus - immunology</subject><subject>Staphylococcus aureus - physiology</subject><issn>1529-2908</issn><issn>1529-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQhiMEoh8g_gGyxAE4ZPFnvLlUWpVCK63aqoDEzfLa46yrJA5xUrX_Hoct227FAflgy_PMO-PXk2VvCJ4RzOafWj-johTPsn0iaJnTkhTPt2c838sOYrzGmHBZ8JfZHmUF5wKL_axbmMHf6MGHFgWHjI6djpATtLpDwxrQ-fLqkiHfulo3jY6hAdRDNdZ6gLgBFp8vT1G49TblofOLnxQNAZnQDn2oUbfWVfiT5cbWTFVeZS-criO8vt8Psx9fTr4fn-bLi69nx4tlbgqGh1wQYUvA0lgOllHBOFtparE2xrLVXFpdMCdLbkhhJZSFwMwCTwHqrHbCsMPsaKPbjasGrIHUkK5V1_tG93cqaK92I61fqyrcKCbxXJQ8CXy4F-jDrxHioBofDdS1biGMUREmKRapLvsPNPUvS0xlQt89Qa_D2LfJiYniWHAiyweq0jWo5H5ILZpJVC0Yo4UosCSJmv2DSstC49MPgPPpfifh407C9EtwO1R6jFGdfbvaZd9vWNOHGHtwW-sIVtPMJcPUNHOJfPvY6S33d8ge7Ikp1FbQP3rzE63fCRzcaw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sokolovska, Anna</creator><creator>Becker, Christine E</creator><creator>Ip, W K Eddie</creator><creator>Rathinam, Vijay A K</creator><creator>Brudner, Matthew</creator><creator>Paquette, Nicholas</creator><creator>Tanne, Antoine</creator><creator>Vanaja, Sivapriya K</creator><creator>Moore, Kathryn J</creator><creator>Fitzgerald, Katherine A</creator><creator>Lacy-Hulbert, Adam</creator><creator>Stuart, Lynda M</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130601</creationdate><title>Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function</title><author>Sokolovska, Anna ; Becker, Christine E ; Ip, W K Eddie ; Rathinam, Vijay A K ; Brudner, Matthew ; Paquette, Nicholas ; Tanne, Antoine ; Vanaja, Sivapriya K ; Moore, Kathryn J ; Fitzgerald, Katherine A ; Lacy-Hulbert, Adam ; Stuart, Lynda M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-515d9e07cd4ed325343ba2d0accd3b87da63f794c16d7e96503de4b872fdaf5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/250/262</topic><topic>Acidification</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Biomedicine</topic><topic>Carrier Proteins - immunology</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspase 1 - immunology</topic><topic>Caspase 1 - metabolism</topic><topic>Cells, Cultured</topic><topic>Enzyme Activation - immunology</topic><topic>Flow Cytometry</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immunoblotting</topic><topic>Immunology</topic><topic>Infectious Diseases</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Membrane Glycoproteins - immunology</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidases - immunology</topic><topic>NADPH Oxidases - metabolism</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein</topic><topic>Oxidases</topic><topic>Phagocytosis - immunology</topic><topic>Phagosomes</topic><topic>Phagosomes - immunology</topic><topic>Phagosomes - metabolism</topic><topic>Phagosomes - microbiology</topic><topic>Phagosomes - ultrastructure</topic><topic>Physiological aspects</topic><topic>Reactive Oxygen Species - immunology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Staphylococcus aureus - immunology</topic><topic>Staphylococcus aureus - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolovska, Anna</creatorcontrib><creatorcontrib>Becker, Christine E</creatorcontrib><creatorcontrib>Ip, W K Eddie</creatorcontrib><creatorcontrib>Rathinam, Vijay A K</creatorcontrib><creatorcontrib>Brudner, Matthew</creatorcontrib><creatorcontrib>Paquette, Nicholas</creatorcontrib><creatorcontrib>Tanne, Antoine</creatorcontrib><creatorcontrib>Vanaja, Sivapriya K</creatorcontrib><creatorcontrib>Moore, Kathryn J</creatorcontrib><creatorcontrib>Fitzgerald, Katherine A</creatorcontrib><creatorcontrib>Lacy-Hulbert, Adam</creatorcontrib><creatorcontrib>Stuart, Lynda M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolovska, Anna</au><au>Becker, Christine E</au><au>Ip, W K Eddie</au><au>Rathinam, Vijay A K</au><au>Brudner, Matthew</au><au>Paquette, Nicholas</au><au>Tanne, Antoine</au><au>Vanaja, Sivapriya K</au><au>Moore, Kathryn J</au><au>Fitzgerald, Katherine A</au><au>Lacy-Hulbert, Adam</au><au>Stuart, Lynda M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function</atitle><jtitle>Nature immunology</jtitle><stitle>Nat Immunol</stitle><addtitle>Nat Immunol</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>14</volume><issue>6</issue><spage>543</spage><epage>553</epage><pages>543-553</pages><issn>1529-2908</issn><eissn>1529-2916</eissn><abstract>The NLRP3 inflammasome is primarily known for producing inflammatory cytokines and inducing pyroptosis. Stuart and colleagues identify an additional role for NLRP3 in driving down the pH of phagosomes. Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23644505</pmid><doi>10.1038/ni.2595</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1529-2908
ispartof Nature immunology, 2013-06, Vol.14 (6), p.543-553
issn 1529-2908
1529-2916
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3708594
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/250/262
Acidification
Animals
Bacteria
Biomedicine
Carrier Proteins - immunology
Carrier Proteins - metabolism
Caspase 1 - immunology
Caspase 1 - metabolism
Cells, Cultured
Enzyme Activation - immunology
Flow Cytometry
Genetic aspects
Health aspects
HEK293 Cells
Host-Pathogen Interactions - immunology
Humans
Hydrogen-Ion Concentration
Immunoblotting
Immunology
Infectious Diseases
Inflammasomes - immunology
Inflammasomes - metabolism
Macrophages - immunology
Macrophages - metabolism
Macrophages - microbiology
Membrane Glycoproteins - immunology
Membrane Glycoproteins - metabolism
Mice
Mice, 129 Strain
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Microscopy, Confocal
Microscopy, Electron
NADPH Oxidase 2
NADPH Oxidases - immunology
NADPH Oxidases - metabolism
NLR Family, Pyrin Domain-Containing 3 Protein
Oxidases
Phagocytosis - immunology
Phagosomes
Phagosomes - immunology
Phagosomes - metabolism
Phagosomes - microbiology
Phagosomes - ultrastructure
Physiological aspects
Reactive Oxygen Species - immunology
Reactive Oxygen Species - metabolism
Staphylococcus aureus - immunology
Staphylococcus aureus - physiology
title Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20caspase-1%20by%20the%20NLRP3%20inflammasome%20regulates%20the%20NADPH%20oxidase%20NOX2%20to%20control%20phagosome%20function&rft.jtitle=Nature%20immunology&rft.au=Sokolovska,%20Anna&rft.date=2013-06-01&rft.volume=14&rft.issue=6&rft.spage=543&rft.epage=553&rft.pages=543-553&rft.issn=1529-2908&rft.eissn=1529-2916&rft_id=info:doi/10.1038/ni.2595&rft_dat=%3Cgale_pubme%3EA332656071%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354054179&rft_id=info:pmid/23644505&rft_galeid=A332656071&rfr_iscdi=true