Redox Proteomics Uncovers Peroxynitrite-sensitive Proteins That Help Escherichia coli to Overcome Nitrosative Stress

Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-07, Vol.288 (27), p.19698-19714
Hauptverfasser: Lindemann, Claudia, Lupilova, Nataliya, Müller, Alexandra, Warscheid, Bettina, Meyer, Helmut E., Kuhlmann, Katja, Eisenacher, Martin, Leichert, Lars I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19714
container_issue 27
container_start_page 19698
container_title The Journal of biological chemistry
container_volume 288
creator Lindemann, Claudia
Lupilova, Nataliya
Müller, Alexandra
Warscheid, Bettina
Meyer, Helmut E.
Kuhlmann, Katja
Eisenacher, Martin
Leichert, Lars I.
description Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite. Background: Oxidative thiol modifications are thought to be one of the major effects of peroxynitrite on proteins. Results: Quantitative redox proteomics identified proteins thiol-modified by peroxynitrite, and cells lacking these proteins show an impaired recovery. Conclusion: Thiol modifications caused by peroxynitrite in Escherichia coli are highly specific for a small number of selected proteins. Significance: Thiol modifications regulate the activity of proteins under peroxynitrite stress.
doi_str_mv 10.1074/jbc.M113.457556
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3707675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820456868</els_id><sourcerecordid>1399057173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b202450deb77222247ca0a8e69fac953f8565ef60fe745f6bfe7f1c79f2c70263</originalsourceid><addsrcrecordid>eNp1kc9PFDEUxxujkQU9ezM9epmlnf7aXkwMQSFBIQqJt6bTeXVLZqZr293Af09hkMiBd3mHft6nr_0i9IGSJSWKH153bvmdUrbkQgkhX6EFJSvWMEF_v0YLQlra6Fas9tB-ztekFtf0LdprmdRScrFA5Sf08QZfpFggjsFlfDW5uIOU8QWkeHM7hZJCgSbDlEMJO5jZMGV8ubYFn8CwwcfZrSEFtw4WuzgEXCI-rxIXR8A_qiFm-zD7qyTI-R164-2Q4f1jP0BXX48vj06as_Nvp0dfzhrHOStN15KWC9JDp1RbiytniV2B1N46LZhfCSnAS-JBceFlV7unTmnfOkVayQ7Q59m72XYj9A6mkuxgNimMNt2aaIN5fjKFtfkTd4YpoqQSVfDpUZDi3y3kYsaQHQyDnSBus6FMayIUVayihzPq6mNzAv90DSXmPitTszL3WZk5qzrx8f_tnvh_4VRAzwDUP9oFSCa7AJODPiRwxfQxvCi_A26upyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399057173</pqid></control><display><type>article</type><title>Redox Proteomics Uncovers Peroxynitrite-sensitive Proteins That Help Escherichia coli to Overcome Nitrosative Stress</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lindemann, Claudia ; Lupilova, Nataliya ; Müller, Alexandra ; Warscheid, Bettina ; Meyer, Helmut E. ; Kuhlmann, Katja ; Eisenacher, Martin ; Leichert, Lars I.</creator><creatorcontrib>Lindemann, Claudia ; Lupilova, Nataliya ; Müller, Alexandra ; Warscheid, Bettina ; Meyer, Helmut E. ; Kuhlmann, Katja ; Eisenacher, Martin ; Leichert, Lars I.</creatorcontrib><description>Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite. Background: Oxidative thiol modifications are thought to be one of the major effects of peroxynitrite on proteins. Results: Quantitative redox proteomics identified proteins thiol-modified by peroxynitrite, and cells lacking these proteins show an impaired recovery. Conclusion: Thiol modifications caused by peroxynitrite in Escherichia coli are highly specific for a small number of selected proteins. Significance: Thiol modifications regulate the activity of proteins under peroxynitrite stress.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.457556</identifier><identifier>PMID: 23696645</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Genomics and Proteomics ; Microbiology ; Nitrosative Stress ; Oxidation-Reduction ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Peroxynitrite ; Peroxynitrous Acid - chemistry ; Peroxynitrous Acid - pharmacology ; Proteomics ; Redox ; Thiol</subject><ispartof>The Journal of biological chemistry, 2013-07, Vol.288 (27), p.19698-19714</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b202450deb77222247ca0a8e69fac953f8565ef60fe745f6bfe7f1c79f2c70263</citedby><cites>FETCH-LOGICAL-c443t-b202450deb77222247ca0a8e69fac953f8565ef60fe745f6bfe7f1c79f2c70263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707675/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707675/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23696645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindemann, Claudia</creatorcontrib><creatorcontrib>Lupilova, Nataliya</creatorcontrib><creatorcontrib>Müller, Alexandra</creatorcontrib><creatorcontrib>Warscheid, Bettina</creatorcontrib><creatorcontrib>Meyer, Helmut E.</creatorcontrib><creatorcontrib>Kuhlmann, Katja</creatorcontrib><creatorcontrib>Eisenacher, Martin</creatorcontrib><creatorcontrib>Leichert, Lars I.</creatorcontrib><title>Redox Proteomics Uncovers Peroxynitrite-sensitive Proteins That Help Escherichia coli to Overcome Nitrosative Stress</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite. Background: Oxidative thiol modifications are thought to be one of the major effects of peroxynitrite on proteins. Results: Quantitative redox proteomics identified proteins thiol-modified by peroxynitrite, and cells lacking these proteins show an impaired recovery. Conclusion: Thiol modifications caused by peroxynitrite in Escherichia coli are highly specific for a small number of selected proteins. Significance: Thiol modifications regulate the activity of proteins under peroxynitrite stress.</description><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Genomics and Proteomics</subject><subject>Microbiology</subject><subject>Nitrosative Stress</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Peroxynitrite</subject><subject>Peroxynitrous Acid - chemistry</subject><subject>Peroxynitrous Acid - pharmacology</subject><subject>Proteomics</subject><subject>Redox</subject><subject>Thiol</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9PFDEUxxujkQU9ezM9epmlnf7aXkwMQSFBIQqJt6bTeXVLZqZr293Af09hkMiBd3mHft6nr_0i9IGSJSWKH153bvmdUrbkQgkhX6EFJSvWMEF_v0YLQlra6Fas9tB-ztekFtf0LdprmdRScrFA5Sf08QZfpFggjsFlfDW5uIOU8QWkeHM7hZJCgSbDlEMJO5jZMGV8ubYFn8CwwcfZrSEFtw4WuzgEXCI-rxIXR8A_qiFm-zD7qyTI-R164-2Q4f1jP0BXX48vj06as_Nvp0dfzhrHOStN15KWC9JDp1RbiytniV2B1N46LZhfCSnAS-JBceFlV7unTmnfOkVayQ7Q59m72XYj9A6mkuxgNimMNt2aaIN5fjKFtfkTd4YpoqQSVfDpUZDi3y3kYsaQHQyDnSBus6FMayIUVayihzPq6mNzAv90DSXmPitTszL3WZk5qzrx8f_tnvh_4VRAzwDUP9oFSCa7AJODPiRwxfQxvCi_A26upyw</recordid><startdate>20130705</startdate><enddate>20130705</enddate><creator>Lindemann, Claudia</creator><creator>Lupilova, Nataliya</creator><creator>Müller, Alexandra</creator><creator>Warscheid, Bettina</creator><creator>Meyer, Helmut E.</creator><creator>Kuhlmann, Katja</creator><creator>Eisenacher, Martin</creator><creator>Leichert, Lars I.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130705</creationdate><title>Redox Proteomics Uncovers Peroxynitrite-sensitive Proteins That Help Escherichia coli to Overcome Nitrosative Stress</title><author>Lindemann, Claudia ; Lupilova, Nataliya ; Müller, Alexandra ; Warscheid, Bettina ; Meyer, Helmut E. ; Kuhlmann, Katja ; Eisenacher, Martin ; Leichert, Lars I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b202450deb77222247ca0a8e69fac953f8565ef60fe745f6bfe7f1c79f2c70263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Genomics and Proteomics</topic><topic>Microbiology</topic><topic>Nitrosative Stress</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Peroxynitrite</topic><topic>Peroxynitrous Acid - chemistry</topic><topic>Peroxynitrous Acid - pharmacology</topic><topic>Proteomics</topic><topic>Redox</topic><topic>Thiol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindemann, Claudia</creatorcontrib><creatorcontrib>Lupilova, Nataliya</creatorcontrib><creatorcontrib>Müller, Alexandra</creatorcontrib><creatorcontrib>Warscheid, Bettina</creatorcontrib><creatorcontrib>Meyer, Helmut E.</creatorcontrib><creatorcontrib>Kuhlmann, Katja</creatorcontrib><creatorcontrib>Eisenacher, Martin</creatorcontrib><creatorcontrib>Leichert, Lars I.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindemann, Claudia</au><au>Lupilova, Nataliya</au><au>Müller, Alexandra</au><au>Warscheid, Bettina</au><au>Meyer, Helmut E.</au><au>Kuhlmann, Katja</au><au>Eisenacher, Martin</au><au>Leichert, Lars I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox Proteomics Uncovers Peroxynitrite-sensitive Proteins That Help Escherichia coli to Overcome Nitrosative Stress</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-07-05</date><risdate>2013</risdate><volume>288</volume><issue>27</issue><spage>19698</spage><epage>19714</epage><pages>19698-19714</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite. Background: Oxidative thiol modifications are thought to be one of the major effects of peroxynitrite on proteins. Results: Quantitative redox proteomics identified proteins thiol-modified by peroxynitrite, and cells lacking these proteins show an impaired recovery. Conclusion: Thiol modifications caused by peroxynitrite in Escherichia coli are highly specific for a small number of selected proteins. Significance: Thiol modifications regulate the activity of proteins under peroxynitrite stress.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23696645</pmid><doi>10.1074/jbc.M113.457556</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-07, Vol.288 (27), p.19698-19714
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3707675
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Genomics and Proteomics
Microbiology
Nitrosative Stress
Oxidation-Reduction
Oxidative Stress - drug effects
Oxidative Stress - genetics
Peroxynitrite
Peroxynitrous Acid - chemistry
Peroxynitrous Acid - pharmacology
Proteomics
Redox
Thiol
title Redox Proteomics Uncovers Peroxynitrite-sensitive Proteins That Help Escherichia coli to Overcome Nitrosative Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20Proteomics%20Uncovers%20Peroxynitrite-sensitive%20Proteins%20That%20Help%20Escherichia%20coli%20to%20Overcome%20Nitrosative%20Stress&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lindemann,%20Claudia&rft.date=2013-07-05&rft.volume=288&rft.issue=27&rft.spage=19698&rft.epage=19714&rft.pages=19698-19714&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.457556&rft_dat=%3Cproquest_pubme%3E1399057173%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399057173&rft_id=info:pmid/23696645&rft_els_id=S0021925820456868&rfr_iscdi=true