An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake
Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involvi...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-07, Vol.288 (27), p.19429-19440 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19440 |
---|---|
container_issue | 27 |
container_start_page | 19429 |
container_title | The Journal of biological chemistry |
container_volume | 288 |
creator | Sharma, Paresh Wollenberg, Kurt Sellers, Morgan Zainabadi, Kayvan Galinsky, Kevin Moss, Eli Nguitragool, Wang Neafsey, Daniel Desai, Sanjay A. |
description | Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.
Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms.
Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes.
Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane.
Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts. |
doi_str_mv | 10.1074/jbc.M113.468371 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3707646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820456571</els_id><sourcerecordid>S0021925820456571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</originalsourceid><addsrcrecordid>eNp1kElLBDEQhYMoOi5nb5I_0GOWXi_CIG4wLoiCt1BTXT1Ge9JDEgf890ZGRQ_WpQ713quqj7FDKcZSVPnxywzH11LqcV7WupIbbCRFrTNdyKdNNhJCyaxRRb3DdkN4EanyRm6zHaUrlezNiM0mjp8t7ZwcRYt84qJdQA_eQs_vKdgQwSHxa8JncDYs-JVbDf3Kujm_Aw_BRuIXyRz41LpXankc-M1b9JZc5I_LCK-0z7Y66AMdfPU99nh-9nB6mU1vL65OJ9MM87qJmSqqWjWAJXQFoICqqwmUaFWj6rbTqLAquhY1NIraAkF2JaZSdYkkQeR6j52sc5dvswW1mC7w0JulTx_5dzOANX8nzj6b-bAyuhJVmZcp4HgdgH4IwVP345XCfOI2Cbf5xG3WuJPj6PfKH_033yRo1gJKj68seRMwoUFqrSeMph3sv-EfhJ-Srw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sharma, Paresh ; Wollenberg, Kurt ; Sellers, Morgan ; Zainabadi, Kayvan ; Galinsky, Kevin ; Moss, Eli ; Nguitragool, Wang ; Neafsey, Daniel ; Desai, Sanjay A.</creator><creatorcontrib>Sharma, Paresh ; Wollenberg, Kurt ; Sellers, Morgan ; Zainabadi, Kayvan ; Galinsky, Kevin ; Moss, Eli ; Nguitragool, Wang ; Neafsey, Daniel ; Desai, Sanjay A.</creatorcontrib><description>Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.
Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms.
Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes.
Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane.
Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.468371</identifier><identifier>PMID: 23720749</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antimalarial Drug Resistance ; Antimalarials - therapeutic use ; Antiporters - genetics ; Antiporters - metabolism ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; DNA Transformation ; Drug Resistance ; Enzyme Inhibitors - pharmacology ; Epigenesis, Genetic ; Epigenetics ; Gene Silencing ; Genes, Protozoan ; Host-pathogen Interactions ; Humans ; Ion Transport - drug effects ; Ion Transport - genetics ; Malaria ; Malaria, Falciparum - drug therapy ; Malaria, Falciparum - genetics ; Malaria, Falciparum - metabolism ; Microbiology ; Nucleosides - pharmacology ; Parasitology ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2013-07, Vol.288 (27), p.19429-19440</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</citedby><cites>FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707646/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707646/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23720749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Paresh</creatorcontrib><creatorcontrib>Wollenberg, Kurt</creatorcontrib><creatorcontrib>Sellers, Morgan</creatorcontrib><creatorcontrib>Zainabadi, Kayvan</creatorcontrib><creatorcontrib>Galinsky, Kevin</creatorcontrib><creatorcontrib>Moss, Eli</creatorcontrib><creatorcontrib>Nguitragool, Wang</creatorcontrib><creatorcontrib>Neafsey, Daniel</creatorcontrib><creatorcontrib>Desai, Sanjay A.</creatorcontrib><title>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.
Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms.
Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes.
Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane.
Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts.</description><subject>Antimalarial Drug Resistance</subject><subject>Antimalarials - therapeutic use</subject><subject>Antiporters - genetics</subject><subject>Antiporters - metabolism</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>DNA Transformation</subject><subject>Drug Resistance</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Gene Silencing</subject><subject>Genes, Protozoan</subject><subject>Host-pathogen Interactions</subject><subject>Humans</subject><subject>Ion Transport - drug effects</subject><subject>Ion Transport - genetics</subject><subject>Malaria</subject><subject>Malaria, Falciparum - drug therapy</subject><subject>Malaria, Falciparum - genetics</subject><subject>Malaria, Falciparum - metabolism</subject><subject>Microbiology</subject><subject>Nucleosides - pharmacology</subject><subject>Parasitology</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kElLBDEQhYMoOi5nb5I_0GOWXi_CIG4wLoiCt1BTXT1Ge9JDEgf890ZGRQ_WpQ713quqj7FDKcZSVPnxywzH11LqcV7WupIbbCRFrTNdyKdNNhJCyaxRRb3DdkN4EanyRm6zHaUrlezNiM0mjp8t7ZwcRYt84qJdQA_eQs_vKdgQwSHxa8JncDYs-JVbDf3Kujm_Aw_BRuIXyRz41LpXankc-M1b9JZc5I_LCK-0z7Y66AMdfPU99nh-9nB6mU1vL65OJ9MM87qJmSqqWjWAJXQFoICqqwmUaFWj6rbTqLAquhY1NIraAkF2JaZSdYkkQeR6j52sc5dvswW1mC7w0JulTx_5dzOANX8nzj6b-bAyuhJVmZcp4HgdgH4IwVP345XCfOI2Cbf5xG3WuJPj6PfKH_033yRo1gJKj68seRMwoUFqrSeMph3sv-EfhJ-Srw</recordid><startdate>20130705</startdate><enddate>20130705</enddate><creator>Sharma, Paresh</creator><creator>Wollenberg, Kurt</creator><creator>Sellers, Morgan</creator><creator>Zainabadi, Kayvan</creator><creator>Galinsky, Kevin</creator><creator>Moss, Eli</creator><creator>Nguitragool, Wang</creator><creator>Neafsey, Daniel</creator><creator>Desai, Sanjay A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130705</creationdate><title>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</title><author>Sharma, Paresh ; Wollenberg, Kurt ; Sellers, Morgan ; Zainabadi, Kayvan ; Galinsky, Kevin ; Moss, Eli ; Nguitragool, Wang ; Neafsey, Daniel ; Desai, Sanjay A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antimalarial Drug Resistance</topic><topic>Antimalarials - therapeutic use</topic><topic>Antiporters - genetics</topic><topic>Antiporters - metabolism</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>DNA Transformation</topic><topic>Drug Resistance</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Gene Silencing</topic><topic>Genes, Protozoan</topic><topic>Host-pathogen Interactions</topic><topic>Humans</topic><topic>Ion Transport - drug effects</topic><topic>Ion Transport - genetics</topic><topic>Malaria</topic><topic>Malaria, Falciparum - drug therapy</topic><topic>Malaria, Falciparum - genetics</topic><topic>Malaria, Falciparum - metabolism</topic><topic>Microbiology</topic><topic>Nucleosides - pharmacology</topic><topic>Parasitology</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Paresh</creatorcontrib><creatorcontrib>Wollenberg, Kurt</creatorcontrib><creatorcontrib>Sellers, Morgan</creatorcontrib><creatorcontrib>Zainabadi, Kayvan</creatorcontrib><creatorcontrib>Galinsky, Kevin</creatorcontrib><creatorcontrib>Moss, Eli</creatorcontrib><creatorcontrib>Nguitragool, Wang</creatorcontrib><creatorcontrib>Neafsey, Daniel</creatorcontrib><creatorcontrib>Desai, Sanjay A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Paresh</au><au>Wollenberg, Kurt</au><au>Sellers, Morgan</au><au>Zainabadi, Kayvan</au><au>Galinsky, Kevin</au><au>Moss, Eli</au><au>Nguitragool, Wang</au><au>Neafsey, Daniel</au><au>Desai, Sanjay A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-07-05</date><risdate>2013</risdate><volume>288</volume><issue>27</issue><spage>19429</spage><epage>19440</epage><pages>19429-19440</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs.
Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms.
Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes.
Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane.
Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23720749</pmid><doi>10.1074/jbc.M113.468371</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2013-07, Vol.288 (27), p.19429-19440 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3707646 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Antimalarial Drug Resistance Antimalarials - therapeutic use Antiporters - genetics Antiporters - metabolism Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism DNA Transformation Drug Resistance Enzyme Inhibitors - pharmacology Epigenesis, Genetic Epigenetics Gene Silencing Genes, Protozoan Host-pathogen Interactions Humans Ion Transport - drug effects Ion Transport - genetics Malaria Malaria, Falciparum - drug therapy Malaria, Falciparum - genetics Malaria, Falciparum - metabolism Microbiology Nucleosides - pharmacology Parasitology Plasmodium falciparum - genetics Plasmodium falciparum - metabolism Protozoan Proteins - genetics Protozoan Proteins - metabolism |
title | An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Epigenetic%20Antimalarial%20Resistance%20Mechanism%20Involving%20Parasite%20Genes%20Linked%20to%20Nutrient%20Uptake&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sharma,%20Paresh&rft.date=2013-07-05&rft.volume=288&rft.issue=27&rft.spage=19429&rft.epage=19440&rft.pages=19429-19440&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.468371&rft_dat=%3Celsevier_pubme%3ES0021925820456571%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23720749&rft_els_id=S0021925820456571&rfr_iscdi=true |