An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake

Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-07, Vol.288 (27), p.19429-19440
Hauptverfasser: Sharma, Paresh, Wollenberg, Kurt, Sellers, Morgan, Zainabadi, Kayvan, Galinsky, Kevin, Moss, Eli, Nguitragool, Wang, Neafsey, Daniel, Desai, Sanjay A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19440
container_issue 27
container_start_page 19429
container_title The Journal of biological chemistry
container_volume 288
creator Sharma, Paresh
Wollenberg, Kurt
Sellers, Morgan
Zainabadi, Kayvan
Galinsky, Kevin
Moss, Eli
Nguitragool, Wang
Neafsey, Daniel
Desai, Sanjay A.
description Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs. Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms. Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes. Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane. Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts.
doi_str_mv 10.1074/jbc.M113.468371
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3707646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820456571</els_id><sourcerecordid>S0021925820456571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</originalsourceid><addsrcrecordid>eNp1kElLBDEQhYMoOi5nb5I_0GOWXi_CIG4wLoiCt1BTXT1Ge9JDEgf890ZGRQ_WpQ713quqj7FDKcZSVPnxywzH11LqcV7WupIbbCRFrTNdyKdNNhJCyaxRRb3DdkN4EanyRm6zHaUrlezNiM0mjp8t7ZwcRYt84qJdQA_eQs_vKdgQwSHxa8JncDYs-JVbDf3Kujm_Aw_BRuIXyRz41LpXankc-M1b9JZc5I_LCK-0z7Y66AMdfPU99nh-9nB6mU1vL65OJ9MM87qJmSqqWjWAJXQFoICqqwmUaFWj6rbTqLAquhY1NIraAkF2JaZSdYkkQeR6j52sc5dvswW1mC7w0JulTx_5dzOANX8nzj6b-bAyuhJVmZcp4HgdgH4IwVP345XCfOI2Cbf5xG3WuJPj6PfKH_033yRo1gJKj68seRMwoUFqrSeMph3sv-EfhJ-Srw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sharma, Paresh ; Wollenberg, Kurt ; Sellers, Morgan ; Zainabadi, Kayvan ; Galinsky, Kevin ; Moss, Eli ; Nguitragool, Wang ; Neafsey, Daniel ; Desai, Sanjay A.</creator><creatorcontrib>Sharma, Paresh ; Wollenberg, Kurt ; Sellers, Morgan ; Zainabadi, Kayvan ; Galinsky, Kevin ; Moss, Eli ; Nguitragool, Wang ; Neafsey, Daniel ; Desai, Sanjay A.</creatorcontrib><description>Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs. Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms. Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes. Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane. Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.468371</identifier><identifier>PMID: 23720749</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antimalarial Drug Resistance ; Antimalarials - therapeutic use ; Antiporters - genetics ; Antiporters - metabolism ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; DNA Transformation ; Drug Resistance ; Enzyme Inhibitors - pharmacology ; Epigenesis, Genetic ; Epigenetics ; Gene Silencing ; Genes, Protozoan ; Host-pathogen Interactions ; Humans ; Ion Transport - drug effects ; Ion Transport - genetics ; Malaria ; Malaria, Falciparum - drug therapy ; Malaria, Falciparum - genetics ; Malaria, Falciparum - metabolism ; Microbiology ; Nucleosides - pharmacology ; Parasitology ; Plasmodium falciparum - genetics ; Plasmodium falciparum - metabolism ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2013-07, Vol.288 (27), p.19429-19440</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</citedby><cites>FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707646/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707646/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23720749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Paresh</creatorcontrib><creatorcontrib>Wollenberg, Kurt</creatorcontrib><creatorcontrib>Sellers, Morgan</creatorcontrib><creatorcontrib>Zainabadi, Kayvan</creatorcontrib><creatorcontrib>Galinsky, Kevin</creatorcontrib><creatorcontrib>Moss, Eli</creatorcontrib><creatorcontrib>Nguitragool, Wang</creatorcontrib><creatorcontrib>Neafsey, Daniel</creatorcontrib><creatorcontrib>Desai, Sanjay A.</creatorcontrib><title>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs. Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms. Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes. Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane. Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts.</description><subject>Antimalarial Drug Resistance</subject><subject>Antimalarials - therapeutic use</subject><subject>Antiporters - genetics</subject><subject>Antiporters - metabolism</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>DNA Transformation</subject><subject>Drug Resistance</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Gene Silencing</subject><subject>Genes, Protozoan</subject><subject>Host-pathogen Interactions</subject><subject>Humans</subject><subject>Ion Transport - drug effects</subject><subject>Ion Transport - genetics</subject><subject>Malaria</subject><subject>Malaria, Falciparum - drug therapy</subject><subject>Malaria, Falciparum - genetics</subject><subject>Malaria, Falciparum - metabolism</subject><subject>Microbiology</subject><subject>Nucleosides - pharmacology</subject><subject>Parasitology</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kElLBDEQhYMoOi5nb5I_0GOWXi_CIG4wLoiCt1BTXT1Ge9JDEgf890ZGRQ_WpQ713quqj7FDKcZSVPnxywzH11LqcV7WupIbbCRFrTNdyKdNNhJCyaxRRb3DdkN4EanyRm6zHaUrlezNiM0mjp8t7ZwcRYt84qJdQA_eQs_vKdgQwSHxa8JncDYs-JVbDf3Kujm_Aw_BRuIXyRz41LpXankc-M1b9JZc5I_LCK-0z7Y66AMdfPU99nh-9nB6mU1vL65OJ9MM87qJmSqqWjWAJXQFoICqqwmUaFWj6rbTqLAquhY1NIraAkF2JaZSdYkkQeR6j52sc5dvswW1mC7w0JulTx_5dzOANX8nzj6b-bAyuhJVmZcp4HgdgH4IwVP345XCfOI2Cbf5xG3WuJPj6PfKH_033yRo1gJKj68seRMwoUFqrSeMph3sv-EfhJ-Srw</recordid><startdate>20130705</startdate><enddate>20130705</enddate><creator>Sharma, Paresh</creator><creator>Wollenberg, Kurt</creator><creator>Sellers, Morgan</creator><creator>Zainabadi, Kayvan</creator><creator>Galinsky, Kevin</creator><creator>Moss, Eli</creator><creator>Nguitragool, Wang</creator><creator>Neafsey, Daniel</creator><creator>Desai, Sanjay A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130705</creationdate><title>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</title><author>Sharma, Paresh ; Wollenberg, Kurt ; Sellers, Morgan ; Zainabadi, Kayvan ; Galinsky, Kevin ; Moss, Eli ; Nguitragool, Wang ; Neafsey, Daniel ; Desai, Sanjay A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-257829ac6af5ac0a7f8ea20d2928df3c2c75fdc3a92ed5ca1f6cccc286ce1a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antimalarial Drug Resistance</topic><topic>Antimalarials - therapeutic use</topic><topic>Antiporters - genetics</topic><topic>Antiporters - metabolism</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>DNA Transformation</topic><topic>Drug Resistance</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Gene Silencing</topic><topic>Genes, Protozoan</topic><topic>Host-pathogen Interactions</topic><topic>Humans</topic><topic>Ion Transport - drug effects</topic><topic>Ion Transport - genetics</topic><topic>Malaria</topic><topic>Malaria, Falciparum - drug therapy</topic><topic>Malaria, Falciparum - genetics</topic><topic>Malaria, Falciparum - metabolism</topic><topic>Microbiology</topic><topic>Nucleosides - pharmacology</topic><topic>Parasitology</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Paresh</creatorcontrib><creatorcontrib>Wollenberg, Kurt</creatorcontrib><creatorcontrib>Sellers, Morgan</creatorcontrib><creatorcontrib>Zainabadi, Kayvan</creatorcontrib><creatorcontrib>Galinsky, Kevin</creatorcontrib><creatorcontrib>Moss, Eli</creatorcontrib><creatorcontrib>Nguitragool, Wang</creatorcontrib><creatorcontrib>Neafsey, Daniel</creatorcontrib><creatorcontrib>Desai, Sanjay A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Paresh</au><au>Wollenberg, Kurt</au><au>Sellers, Morgan</au><au>Zainabadi, Kayvan</au><au>Galinsky, Kevin</au><au>Moss, Eli</au><au>Nguitragool, Wang</au><au>Neafsey, Daniel</au><au>Desai, Sanjay A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-07-05</date><risdate>2013</risdate><volume>288</volume><issue>27</issue><spage>19429</spage><epage>19440</epage><pages>19429-19440</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion channel, a nutrient channel that also transports ions and antimalarial compounds at the host erythrocyte membrane. Two blasticidin S-resistant lines exhibited markedly reduced expression of clag genes linked to channel activity, but had no genome-level changes. Silencing aborted production of the channel protein and was directly responsible for reduced uptake. Silencing affected clag paralogs on two chromosomes and was mediated by specific histone modifications, allowing a rapidly reversible drug resistance phenotype advantageous to the parasite. These findings implicate a novel epigenetic resistance mechanism that involves reduced host cell uptake and is a worrisome liability for water-soluble antimalarial drugs. Background: Malaria parasites acquire antimalarial resistance through incompletely understood mechanisms. Results: Resistance to blasticidin S results from reversible silencing of parasite clag genes through histone modifications without DNA level changes. Conclusion: Sophisticated epigenetic control of clag genes permits regulated control of nutrient and antimalarial transport at the host membrane. Significance: This resistance mechanism allows rapid parasite adaptation to environmental pressures and is worrisome for drug discovery efforts.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23720749</pmid><doi>10.1074/jbc.M113.468371</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-07, Vol.288 (27), p.19429-19440
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3707646
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Antimalarial Drug Resistance
Antimalarials - therapeutic use
Antiporters - genetics
Antiporters - metabolism
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
DNA Transformation
Drug Resistance
Enzyme Inhibitors - pharmacology
Epigenesis, Genetic
Epigenetics
Gene Silencing
Genes, Protozoan
Host-pathogen Interactions
Humans
Ion Transport - drug effects
Ion Transport - genetics
Malaria
Malaria, Falciparum - drug therapy
Malaria, Falciparum - genetics
Malaria, Falciparum - metabolism
Microbiology
Nucleosides - pharmacology
Parasitology
Plasmodium falciparum - genetics
Plasmodium falciparum - metabolism
Protozoan Proteins - genetics
Protozoan Proteins - metabolism
title An Epigenetic Antimalarial Resistance Mechanism Involving Parasite Genes Linked to Nutrient Uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Epigenetic%20Antimalarial%20Resistance%20Mechanism%20Involving%20Parasite%20Genes%20Linked%20to%20Nutrient%20Uptake&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sharma,%20Paresh&rft.date=2013-07-05&rft.volume=288&rft.issue=27&rft.spage=19429&rft.epage=19440&rft.pages=19429-19440&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.468371&rft_dat=%3Celsevier_pubme%3ES0021925820456571%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23720749&rft_els_id=S0021925820456571&rfr_iscdi=true