Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery

We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2013-07, Vol.244, p.252-263
Hauptverfasser: Radhakrishnan, R., Uma, B., Liu, J., Ayyaswamy, P.S., Eckmann, D.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue
container_start_page 252
container_title Journal of computational physics
container_volume 244
creator Radhakrishnan, R.
Uma, B.
Liu, J.
Ayyaswamy, P.S.
Eckmann, D.M.
description We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.
doi_str_mv 10.1016/j.jcp.2012.10.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3706300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112006274</els_id><sourcerecordid>1513459328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTjv6AG4kSzfV5qcqlSAIMvgHA27GdUgnt7vSVCVlkmrpF_C5TdHjoBtdhZt7zuHe-yH0kpItJVS8OW6Pdt4yQlmtt4SJR2hDiSIN66l4jDaEMNoopegVepbzkRAiu1Y-RVeMy45zKTfo5x1Mc0xmxNMyFp-tGQGbeU7R2AHvY8LBhGhNSh4SnmLxMeAfvgw4-9VhAsQlY-MGyGvLBIeHs0vRnYOZvMU-FEjGrr5cC1xMOkABh11aDtjB6E-Qzs_Rk70ZM7y4f6_Rt48f7m4-N7dfP325eX_b2I72paGwZ71olWI7xayTxFiyg5Z3O8uAtlIYZ5liLRNc2U5QaUXfc0pBgFNUtvwavbvkzstuAmchlLq7npOfTDrraLz-uxP8oA_xpHlPBCekBry-D0jx-wK56KkeDcbxcghNO8rbTnEm_y9t-65jddRVSi9Sm2LOCfYPE1GiV9T6qCtqvaJevyrq6nn15yoPjt9sq-DtRQD1oKeKT2frIVhwPoEt2kX_j_hfa6q9ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475522638</pqid></control><display><type>article</type><title>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Radhakrishnan, R. ; Uma, B. ; Liu, J. ; Ayyaswamy, P.S. ; Eckmann, D.M.</creator><creatorcontrib>Radhakrishnan, R. ; Uma, B. ; Liu, J. ; Ayyaswamy, P.S. ; Eckmann, D.M.</creatorcontrib><description>We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.10.026</identifier><identifier>PMID: 23853388</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adhesion ; Computational fluid dynamics ; Computer simulation ; Drug delivery systems ; Finite element method ; Fluctuating Hydrodynamics ; Fluid flow ; Hydrodynamics ; Mathematical analysis ; Multiscale ; Nanocarrier ; Nanostructure ; Potential of mean force</subject><ispartof>Journal of computational physics, 2013-07, Vol.244, p.252-263</ispartof><rights>2012 Elsevier Inc.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</citedby><cites>FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2012.10.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radhakrishnan, R.</creatorcontrib><creatorcontrib>Uma, B.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Ayyaswamy, P.S.</creatorcontrib><creatorcontrib>Eckmann, D.M.</creatorcontrib><title>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</title><title>Journal of computational physics</title><addtitle>J Comput Phys</addtitle><description>We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.</description><subject>Adhesion</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Drug delivery systems</subject><subject>Finite element method</subject><subject>Fluctuating Hydrodynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Multiscale</subject><subject>Nanocarrier</subject><subject>Nanostructure</subject><subject>Potential of mean force</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc2KFDEUhYMoTjv6AG4kSzfV5qcqlSAIMvgHA27GdUgnt7vSVCVlkmrpF_C5TdHjoBtdhZt7zuHe-yH0kpItJVS8OW6Pdt4yQlmtt4SJR2hDiSIN66l4jDaEMNoopegVepbzkRAiu1Y-RVeMy45zKTfo5x1Mc0xmxNMyFp-tGQGbeU7R2AHvY8LBhGhNSh4SnmLxMeAfvgw4-9VhAsQlY-MGyGvLBIeHs0vRnYOZvMU-FEjGrr5cC1xMOkABh11aDtjB6E-Qzs_Rk70ZM7y4f6_Rt48f7m4-N7dfP325eX_b2I72paGwZ71olWI7xayTxFiyg5Z3O8uAtlIYZ5liLRNc2U5QaUXfc0pBgFNUtvwavbvkzstuAmchlLq7npOfTDrraLz-uxP8oA_xpHlPBCekBry-D0jx-wK56KkeDcbxcghNO8rbTnEm_y9t-65jddRVSi9Sm2LOCfYPE1GiV9T6qCtqvaJevyrq6nn15yoPjt9sq-DtRQD1oKeKT2frIVhwPoEt2kX_j_hfa6q9ug</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Radhakrishnan, R.</creator><creator>Uma, B.</creator><creator>Liu, J.</creator><creator>Ayyaswamy, P.S.</creator><creator>Eckmann, D.M.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</title><author>Radhakrishnan, R. ; Uma, B. ; Liu, J. ; Ayyaswamy, P.S. ; Eckmann, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adhesion</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Drug delivery systems</topic><topic>Finite element method</topic><topic>Fluctuating Hydrodynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Multiscale</topic><topic>Nanocarrier</topic><topic>Nanostructure</topic><topic>Potential of mean force</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radhakrishnan, R.</creatorcontrib><creatorcontrib>Uma, B.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Ayyaswamy, P.S.</creatorcontrib><creatorcontrib>Eckmann, D.M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radhakrishnan, R.</au><au>Uma, B.</au><au>Liu, J.</au><au>Ayyaswamy, P.S.</au><au>Eckmann, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</atitle><jtitle>Journal of computational physics</jtitle><addtitle>J Comput Phys</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>244</volume><spage>252</spage><epage>263</epage><pages>252-263</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23853388</pmid><doi>10.1016/j.jcp.2012.10.026</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2013-07, Vol.244, p.252-263
issn 0021-9991
1090-2716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3706300
source Elsevier ScienceDirect Journals Complete
subjects Adhesion
Computational fluid dynamics
Computer simulation
Drug delivery systems
Finite element method
Fluctuating Hydrodynamics
Fluid flow
Hydrodynamics
Mathematical analysis
Multiscale
Nanocarrier
Nanostructure
Potential of mean force
title Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20multiscale%20approach%20for%20nanocarrier%20motion%20with%20simultaneous%20adhesion%20and%20hydrodynamic%20interactions%20in%20targeted%20drug%20delivery&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Radhakrishnan,%20R.&rft.date=2013-07-01&rft.volume=244&rft.spage=252&rft.epage=263&rft.pages=252-263&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2012.10.026&rft_dat=%3Cproquest_pubme%3E1513459328%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475522638&rft_id=info:pmid/23853388&rft_els_id=S0021999112006274&rfr_iscdi=true