Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery
We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compu...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2013-07, Vol.244, p.252-263 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | |
container_start_page | 252 |
container_title | Journal of computational physics |
container_volume | 244 |
creator | Radhakrishnan, R. Uma, B. Liu, J. Ayyaswamy, P.S. Eckmann, D.M. |
description | We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery. |
doi_str_mv | 10.1016/j.jcp.2012.10.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3706300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112006274</els_id><sourcerecordid>1513459328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTjv6AG4kSzfV5qcqlSAIMvgHA27GdUgnt7vSVCVlkmrpF_C5TdHjoBtdhZt7zuHe-yH0kpItJVS8OW6Pdt4yQlmtt4SJR2hDiSIN66l4jDaEMNoopegVepbzkRAiu1Y-RVeMy45zKTfo5x1Mc0xmxNMyFp-tGQGbeU7R2AHvY8LBhGhNSh4SnmLxMeAfvgw4-9VhAsQlY-MGyGvLBIeHs0vRnYOZvMU-FEjGrr5cC1xMOkABh11aDtjB6E-Qzs_Rk70ZM7y4f6_Rt48f7m4-N7dfP325eX_b2I72paGwZ71olWI7xayTxFiyg5Z3O8uAtlIYZ5liLRNc2U5QaUXfc0pBgFNUtvwavbvkzstuAmchlLq7npOfTDrraLz-uxP8oA_xpHlPBCekBry-D0jx-wK56KkeDcbxcghNO8rbTnEm_y9t-65jddRVSi9Sm2LOCfYPE1GiV9T6qCtqvaJevyrq6nn15yoPjt9sq-DtRQD1oKeKT2frIVhwPoEt2kX_j_hfa6q9ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475522638</pqid></control><display><type>article</type><title>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Radhakrishnan, R. ; Uma, B. ; Liu, J. ; Ayyaswamy, P.S. ; Eckmann, D.M.</creator><creatorcontrib>Radhakrishnan, R. ; Uma, B. ; Liu, J. ; Ayyaswamy, P.S. ; Eckmann, D.M.</creatorcontrib><description>We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.10.026</identifier><identifier>PMID: 23853388</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adhesion ; Computational fluid dynamics ; Computer simulation ; Drug delivery systems ; Finite element method ; Fluctuating Hydrodynamics ; Fluid flow ; Hydrodynamics ; Mathematical analysis ; Multiscale ; Nanocarrier ; Nanostructure ; Potential of mean force</subject><ispartof>Journal of computational physics, 2013-07, Vol.244, p.252-263</ispartof><rights>2012 Elsevier Inc.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</citedby><cites>FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2012.10.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radhakrishnan, R.</creatorcontrib><creatorcontrib>Uma, B.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Ayyaswamy, P.S.</creatorcontrib><creatorcontrib>Eckmann, D.M.</creatorcontrib><title>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</title><title>Journal of computational physics</title><addtitle>J Comput Phys</addtitle><description>We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.</description><subject>Adhesion</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Drug delivery systems</subject><subject>Finite element method</subject><subject>Fluctuating Hydrodynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Multiscale</subject><subject>Nanocarrier</subject><subject>Nanostructure</subject><subject>Potential of mean force</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc2KFDEUhYMoTjv6AG4kSzfV5qcqlSAIMvgHA27GdUgnt7vSVCVlkmrpF_C5TdHjoBtdhZt7zuHe-yH0kpItJVS8OW6Pdt4yQlmtt4SJR2hDiSIN66l4jDaEMNoopegVepbzkRAiu1Y-RVeMy45zKTfo5x1Mc0xmxNMyFp-tGQGbeU7R2AHvY8LBhGhNSh4SnmLxMeAfvgw4-9VhAsQlY-MGyGvLBIeHs0vRnYOZvMU-FEjGrr5cC1xMOkABh11aDtjB6E-Qzs_Rk70ZM7y4f6_Rt48f7m4-N7dfP325eX_b2I72paGwZ71olWI7xayTxFiyg5Z3O8uAtlIYZ5liLRNc2U5QaUXfc0pBgFNUtvwavbvkzstuAmchlLq7npOfTDrraLz-uxP8oA_xpHlPBCekBry-D0jx-wK56KkeDcbxcghNO8rbTnEm_y9t-65jddRVSi9Sm2LOCfYPE1GiV9T6qCtqvaJevyrq6nn15yoPjt9sq-DtRQD1oKeKT2frIVhwPoEt2kX_j_hfa6q9ug</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Radhakrishnan, R.</creator><creator>Uma, B.</creator><creator>Liu, J.</creator><creator>Ayyaswamy, P.S.</creator><creator>Eckmann, D.M.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</title><author>Radhakrishnan, R. ; Uma, B. ; Liu, J. ; Ayyaswamy, P.S. ; Eckmann, D.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-1ef2764992b92cd80ac0be435bc2e1486adc29242639c5618c677311e6ed91843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adhesion</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Drug delivery systems</topic><topic>Finite element method</topic><topic>Fluctuating Hydrodynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Multiscale</topic><topic>Nanocarrier</topic><topic>Nanostructure</topic><topic>Potential of mean force</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radhakrishnan, R.</creatorcontrib><creatorcontrib>Uma, B.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Ayyaswamy, P.S.</creatorcontrib><creatorcontrib>Eckmann, D.M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radhakrishnan, R.</au><au>Uma, B.</au><au>Liu, J.</au><au>Ayyaswamy, P.S.</au><au>Eckmann, D.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery</atitle><jtitle>Journal of computational physics</jtitle><addtitle>J Comput Phys</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>244</volume><spage>252</spage><epage>263</epage><pages>252-263</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a fluctuating hydrodynamics approach and a hybrid approach combining fluctuating hydrodynamics with generalized Langevin dynamics to resolve the motion of a nanocarrier when subject to both hydrodynamic interactions and adhesive interactions. Specifically, using these approaches, we compute equilibrium probability distributions at constant temperature as well as velocity autocorrelation functions of the nanocarrier subject to thermal motion in a quiescent Newtonian fluid medium, when tethered by a harmonic spring force mimicking a tether due to a single receptor–ligand bond. We demonstrate that the thermal equipartition of translation, rotation, and spring degrees of freedom are preserved by our formalism while simultaneously resolving the nature of the hydrodynamic correlations. Additionally, we evaluate the potential of mean force (or free energy density) along a specified reaction coordinate to facilitate extensive conformational sampling of the nanocarrier motion. We show that our results are in excellent agreement with analytical results and Monte Carlo simulations, thereby validating our methodologies. The frameworks we have presented provide a comprehensive platform for temporal multiscale modeling of hydrodynamic and microscopic interactions mediating nanocarrier motion and adhesion in vascular targeted drug delivery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23853388</pmid><doi>10.1016/j.jcp.2012.10.026</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2013-07, Vol.244, p.252-263 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3706300 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Adhesion Computational fluid dynamics Computer simulation Drug delivery systems Finite element method Fluctuating Hydrodynamics Fluid flow Hydrodynamics Mathematical analysis Multiscale Nanocarrier Nanostructure Potential of mean force |
title | Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20multiscale%20approach%20for%20nanocarrier%20motion%20with%20simultaneous%20adhesion%20and%20hydrodynamic%20interactions%20in%20targeted%20drug%20delivery&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Radhakrishnan,%20R.&rft.date=2013-07-01&rft.volume=244&rft.spage=252&rft.epage=263&rft.pages=252-263&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2012.10.026&rft_dat=%3Cproquest_pubme%3E1513459328%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475522638&rft_id=info:pmid/23853388&rft_els_id=S0021999112006274&rfr_iscdi=true |