Using VIPT‑Jump to Distinguish Between Different Folding Mechanisms: Application to BBL and a Trpzip

Protein folding involves a large number of sequential molecular steps or conformational substates. Thus, experimental characterization of the underlying folding energy landscape for any given protein is difficult. Herein, we present a new method that can be used to determine the major characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-05, Vol.135 (20), p.7668-7673
Hauptverfasser: Lin, Chun-Wei, Culik, Robert M, Gai, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7673
container_issue 20
container_start_page 7668
container_title Journal of the American Chemical Society
container_volume 135
creator Lin, Chun-Wei
Culik, Robert M
Gai, Feng
description Protein folding involves a large number of sequential molecular steps or conformational substates. Thus, experimental characterization of the underlying folding energy landscape for any given protein is difficult. Herein, we present a new method that can be used to determine the major characteristics of the folding energy landscape in question, e.g., to distinguish between activated and barrierless downhill folding scenarios. This method is based on the idea that the conformational relaxation kinetics of different folding mechanisms at a given final condition will show different dependences on the initial condition. We show, using both simulation and experiment, that it is possible to differentiate between disparate kinetic folding models by comparing temperature jump (T-jump) relaxation traces obtained with a fixed final temperature and varied initial temperatures, which effectively varies the initial potential (VIP) of the system of interest. We apply this method (hereafter refer to as VIPT-jump) to two model systems, tryptophan zipper (Trpzip)-2c and BBL, and our results show that BBL exhibits characteristics of barrierless downhill folding, whereas Trpzip-2c folding encounters a free energy barrier. In addition, using the T-jump data of BBL we are able to provide, via Langevin dynamics simulations, a realistic estimate of its conformational diffusion coefficient.
doi_str_mv 10.1021/ja401473m
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3706100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1354791331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-a9feacf3dbbbcb621eaadf5abd440f2c908cb5f51b7c103f07af7ed7e9fe5f5b3</originalsourceid><addsrcrecordid>eNqFUctOwzAQtBAIyuPADyBfkLgE_Mij5YBEeRYVwaFwtdaOTV0lTogTEJz4BX6RL8EVBcGJvax2dnY02kFom5J9Shg9mEFMaJzxcgn1aMJIlFCWLqMeIYRFWT_la2jd-1kYY9anq2iN8TRmNOE9ZO68dQ_4fnQ7-Xh7v-rKGrcVPrW-DXBn_RQPdfustQuYMbrRrsXnVZHPj661moKzvvSH-LiuC6ugtZWbCwyHYwwux4AnTf1q6020YqDwemvRN9Dd-dnk5DIa31yMTo7HEbBB3EYwMBqU4bmUUsmUUQ2QmwRkHsfEMDUgfSUTk1CZKUq4IRmYTOeZDncBlnwDHX3p1p0sda6C3QYKUTe2hOZFVGDF342zU_FQPQmekZQSEgT2FgJN9dhp34rSeqWLApyuOi9YeCIPlaT_UilP4mxAOaeBuvPb1o-f7xwCYfeLAMqLWdU1LnxJUCLm-YqffPkn6ISYOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354791331</pqid></control><display><type>article</type><title>Using VIPT‑Jump to Distinguish Between Different Folding Mechanisms: Application to BBL and a Trpzip</title><source>ACS Publications</source><source>MEDLINE</source><creator>Lin, Chun-Wei ; Culik, Robert M ; Gai, Feng</creator><creatorcontrib>Lin, Chun-Wei ; Culik, Robert M ; Gai, Feng</creatorcontrib><description>Protein folding involves a large number of sequential molecular steps or conformational substates. Thus, experimental characterization of the underlying folding energy landscape for any given protein is difficult. Herein, we present a new method that can be used to determine the major characteristics of the folding energy landscape in question, e.g., to distinguish between activated and barrierless downhill folding scenarios. This method is based on the idea that the conformational relaxation kinetics of different folding mechanisms at a given final condition will show different dependences on the initial condition. We show, using both simulation and experiment, that it is possible to differentiate between disparate kinetic folding models by comparing temperature jump (T-jump) relaxation traces obtained with a fixed final temperature and varied initial temperatures, which effectively varies the initial potential (VIP) of the system of interest. We apply this method (hereafter refer to as VIPT-jump) to two model systems, tryptophan zipper (Trpzip)-2c and BBL, and our results show that BBL exhibits characteristics of barrierless downhill folding, whereas Trpzip-2c folding encounters a free energy barrier. In addition, using the T-jump data of BBL we are able to provide, via Langevin dynamics simulations, a realistic estimate of its conformational diffusion coefficient.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja401473m</identifier><identifier>PMID: 23642153</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>diffusivity ; Escherichia coli Proteins - chemistry ; Gibbs free energy ; methodology ; Protein Folding ; Temperature ; tryptophan ; Tryptophan - chemical synthesis ; Tryptophan - chemistry</subject><ispartof>Journal of the American Chemical Society, 2013-05, Vol.135 (20), p.7668-7673</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja401473m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja401473m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23642153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Chun-Wei</creatorcontrib><creatorcontrib>Culik, Robert M</creatorcontrib><creatorcontrib>Gai, Feng</creatorcontrib><title>Using VIPT‑Jump to Distinguish Between Different Folding Mechanisms: Application to BBL and a Trpzip</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Protein folding involves a large number of sequential molecular steps or conformational substates. Thus, experimental characterization of the underlying folding energy landscape for any given protein is difficult. Herein, we present a new method that can be used to determine the major characteristics of the folding energy landscape in question, e.g., to distinguish between activated and barrierless downhill folding scenarios. This method is based on the idea that the conformational relaxation kinetics of different folding mechanisms at a given final condition will show different dependences on the initial condition. We show, using both simulation and experiment, that it is possible to differentiate between disparate kinetic folding models by comparing temperature jump (T-jump) relaxation traces obtained with a fixed final temperature and varied initial temperatures, which effectively varies the initial potential (VIP) of the system of interest. We apply this method (hereafter refer to as VIPT-jump) to two model systems, tryptophan zipper (Trpzip)-2c and BBL, and our results show that BBL exhibits characteristics of barrierless downhill folding, whereas Trpzip-2c folding encounters a free energy barrier. In addition, using the T-jump data of BBL we are able to provide, via Langevin dynamics simulations, a realistic estimate of its conformational diffusion coefficient.</description><subject>diffusivity</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Gibbs free energy</subject><subject>methodology</subject><subject>Protein Folding</subject><subject>Temperature</subject><subject>tryptophan</subject><subject>Tryptophan - chemical synthesis</subject><subject>Tryptophan - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctOwzAQtBAIyuPADyBfkLgE_Mij5YBEeRYVwaFwtdaOTV0lTogTEJz4BX6RL8EVBcGJvax2dnY02kFom5J9Shg9mEFMaJzxcgn1aMJIlFCWLqMeIYRFWT_la2jd-1kYY9anq2iN8TRmNOE9ZO68dQ_4fnQ7-Xh7v-rKGrcVPrW-DXBn_RQPdfustQuYMbrRrsXnVZHPj661moKzvvSH-LiuC6ugtZWbCwyHYwwux4AnTf1q6020YqDwemvRN9Dd-dnk5DIa31yMTo7HEbBB3EYwMBqU4bmUUsmUUQ2QmwRkHsfEMDUgfSUTk1CZKUq4IRmYTOeZDncBlnwDHX3p1p0sda6C3QYKUTe2hOZFVGDF342zU_FQPQmekZQSEgT2FgJN9dhp34rSeqWLApyuOi9YeCIPlaT_UilP4mxAOaeBuvPb1o-f7xwCYfeLAMqLWdU1LnxJUCLm-YqffPkn6ISYOA</recordid><startdate>20130522</startdate><enddate>20130522</enddate><creator>Lin, Chun-Wei</creator><creator>Culik, Robert M</creator><creator>Gai, Feng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130522</creationdate><title>Using VIPT‑Jump to Distinguish Between Different Folding Mechanisms: Application to BBL and a Trpzip</title><author>Lin, Chun-Wei ; Culik, Robert M ; Gai, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-a9feacf3dbbbcb621eaadf5abd440f2c908cb5f51b7c103f07af7ed7e9fe5f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>diffusivity</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Gibbs free energy</topic><topic>methodology</topic><topic>Protein Folding</topic><topic>Temperature</topic><topic>tryptophan</topic><topic>Tryptophan - chemical synthesis</topic><topic>Tryptophan - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chun-Wei</creatorcontrib><creatorcontrib>Culik, Robert M</creatorcontrib><creatorcontrib>Gai, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chun-Wei</au><au>Culik, Robert M</au><au>Gai, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using VIPT‑Jump to Distinguish Between Different Folding Mechanisms: Application to BBL and a Trpzip</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-05-22</date><risdate>2013</risdate><volume>135</volume><issue>20</issue><spage>7668</spage><epage>7673</epage><pages>7668-7673</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Protein folding involves a large number of sequential molecular steps or conformational substates. Thus, experimental characterization of the underlying folding energy landscape for any given protein is difficult. Herein, we present a new method that can be used to determine the major characteristics of the folding energy landscape in question, e.g., to distinguish between activated and barrierless downhill folding scenarios. This method is based on the idea that the conformational relaxation kinetics of different folding mechanisms at a given final condition will show different dependences on the initial condition. We show, using both simulation and experiment, that it is possible to differentiate between disparate kinetic folding models by comparing temperature jump (T-jump) relaxation traces obtained with a fixed final temperature and varied initial temperatures, which effectively varies the initial potential (VIP) of the system of interest. We apply this method (hereafter refer to as VIPT-jump) to two model systems, tryptophan zipper (Trpzip)-2c and BBL, and our results show that BBL exhibits characteristics of barrierless downhill folding, whereas Trpzip-2c folding encounters a free energy barrier. In addition, using the T-jump data of BBL we are able to provide, via Langevin dynamics simulations, a realistic estimate of its conformational diffusion coefficient.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23642153</pmid><doi>10.1021/ja401473m</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2013-05, Vol.135 (20), p.7668-7673
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3706100
source ACS Publications; MEDLINE
subjects diffusivity
Escherichia coli Proteins - chemistry
Gibbs free energy
methodology
Protein Folding
Temperature
tryptophan
Tryptophan - chemical synthesis
Tryptophan - chemistry
title Using VIPT‑Jump to Distinguish Between Different Folding Mechanisms: Application to BBL and a Trpzip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20VIPT%E2%80%91Jump%20to%20Distinguish%20Between%20Different%20Folding%20Mechanisms:%20Application%20to%20BBL%20and%20a%20Trpzip&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lin,%20Chun-Wei&rft.date=2013-05-22&rft.volume=135&rft.issue=20&rft.spage=7668&rft.epage=7673&rft.pages=7668-7673&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja401473m&rft_dat=%3Cproquest_pubme%3E1354791331%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354791331&rft_id=info:pmid/23642153&rfr_iscdi=true