Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum

The carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC biology 2013-06, Vol.11 (1), p.67-67, Article 67
Hauptverfasser: MacRae, James I, Dixon, Matthew Wa, Dearnley, Megan K, Chua, Hwa H, Chambers, Jennifer M, Kenny, Shannon, Bottova, Iveta, Tilley, Leann, McConville, Malcolm J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 67
container_title BMC biology
container_volume 11
creator MacRae, James I
Dixon, Matthew Wa
Dearnley, Megan K
Chua, Hwa H
Chambers, Jennifer M
Kenny, Shannon
Bottova, Iveta
Tilley, Leann
McConville, Malcolm J
description The carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a canonical mitochondrial tricarboxylic acid (TCA) cycle, and it was recently proposed that they may catabolize glutamine via an atypical branched TCA cycle. Whether these stages catabolize glucose in the TCA cycle and what is the functional significance of mitochondrial metabolism remains unresolved. We reassessed the central carbon metabolism of P. falciparum asexual and sexual blood stages, by metabolically labeling each stage with 13C-glucose and 13C-glutamine, and analyzing isotopic enrichment in key pathways using mass spectrometry. In contrast to previous findings, we found that carbon skeletons derived from both glucose and glutamine are catabolized in a canonical oxidative TCA cycle in both the asexual and sexual blood stages. Flux of glucose carbon skeletons into the TCA cycle is low in the asexual blood stages, with glutamine providing most of the carbon skeletons, but increases dramatically in the gametocyte stages. Increased glucose catabolism in the gametocyte TCA cycle was associated with increased glucose uptake, suggesting that the energy requirements of this stage are high. Significantly, whereas chemical inhibition of the TCA cycle had little effect on the growth or viability of asexual stages, inhibition of the gametocyte TCA cycle led to arrested development and death. Our metabolomics approach has allowed us to revise current models of P. falciparum carbon metabolism. In particular, we found that both asexual and sexual blood stages utilize a conventional TCA cycle to catabolize glucose and glutamine. Gametocyte differentiation is associated with a programmed remodeling of central carbon metabolism that may be required for parasite survival either before or after uptake by the mosquito vector. The increased sensitivity of gametocyte stages to TCA-cycle inhibitors provides a potential target for transmission-blocking drugs.
doi_str_mv 10.1186/1741-7007-11-67
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3704724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534639124</galeid><sourcerecordid>A534639124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-ff006d70d77eae536ca709f8ece0702cd7dde45cdc9fb1f530faa5c4e0f250813</originalsourceid><addsrcrecordid>eNqNkstv1DAQhyMEoqVw5oYscYFDWjuO480Fqap4VCoq4nW1Zu3xris73sYOKv89Dl1Wu4gD8sHz-H4z8niq6jmjp4wtujMmW1ZLSmXNWN3JB9XxLvJwzz6qnqR0Q2kjpOSPq6OGy473LTuu3EeXo17HwYwOPAmYYRm9S4FESxLeTSUIgyGwtZc-RkNShhWmGclrJAE8FDXZwAjJZSSfPKQQjZsCseC1K4kpPK0eFSfhs-19Un179_brxYf66vr95cX5Va07IXJtLaWdkdRIiYCCdxok7e0CNVJJG22kMdgKbXRvl8wKTi2A0C1S2wi6YPykenNfdzMtAxqNQx7Bq83oAow_VQSnDjODW6tV_KG4pK1s2lLg1bbAGG8nTFkFlzR6DwPGKSnWskawvmGLgr78C72J0ziU5ynG-76Mn8k9agUelRtsLH31XFSdC96Wn2C_257-gyrHYHA6DmhdiR8IXh8ICpPxLq9gSkldfvn8_-z190P27J7VY0xpRLubHaNq3jo175Wa96q4qpNF8WJ_5Dv-z5rxXwEY0ZE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399741178</pqid></control><display><type>article</type><title>Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>MacRae, James I ; Dixon, Matthew Wa ; Dearnley, Megan K ; Chua, Hwa H ; Chambers, Jennifer M ; Kenny, Shannon ; Bottova, Iveta ; Tilley, Leann ; McConville, Malcolm J</creator><creatorcontrib>MacRae, James I ; Dixon, Matthew Wa ; Dearnley, Megan K ; Chua, Hwa H ; Chambers, Jennifer M ; Kenny, Shannon ; Bottova, Iveta ; Tilley, Leann ; McConville, Malcolm J</creatorcontrib><description>The carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a canonical mitochondrial tricarboxylic acid (TCA) cycle, and it was recently proposed that they may catabolize glutamine via an atypical branched TCA cycle. Whether these stages catabolize glucose in the TCA cycle and what is the functional significance of mitochondrial metabolism remains unresolved. We reassessed the central carbon metabolism of P. falciparum asexual and sexual blood stages, by metabolically labeling each stage with 13C-glucose and 13C-glutamine, and analyzing isotopic enrichment in key pathways using mass spectrometry. In contrast to previous findings, we found that carbon skeletons derived from both glucose and glutamine are catabolized in a canonical oxidative TCA cycle in both the asexual and sexual blood stages. Flux of glucose carbon skeletons into the TCA cycle is low in the asexual blood stages, with glutamine providing most of the carbon skeletons, but increases dramatically in the gametocyte stages. Increased glucose catabolism in the gametocyte TCA cycle was associated with increased glucose uptake, suggesting that the energy requirements of this stage are high. Significantly, whereas chemical inhibition of the TCA cycle had little effect on the growth or viability of asexual stages, inhibition of the gametocyte TCA cycle led to arrested development and death. Our metabolomics approach has allowed us to revise current models of P. falciparum carbon metabolism. In particular, we found that both asexual and sexual blood stages utilize a conventional TCA cycle to catabolize glucose and glutamine. Gametocyte differentiation is associated with a programmed remodeling of central carbon metabolism that may be required for parasite survival either before or after uptake by the mosquito vector. The increased sensitivity of gametocyte stages to TCA-cycle inhibitors provides a potential target for transmission-blocking drugs.</description><identifier>ISSN: 1741-7007</identifier><identifier>EISSN: 1741-7007</identifier><identifier>DOI: 10.1186/1741-7007-11-67</identifier><identifier>PMID: 23763941</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Animals ; Biotechnology industry ; Citric Acid Cycle - drug effects ; Erythrocytes - drug effects ; Erythrocytes - parasitology ; Fluoroacetates - pharmacology ; Gas Chromatography-Mass Spectrometry ; Glucose - metabolism ; Glutamine - metabolism ; Humans ; International economic relations ; Life Cycle Stages - drug effects ; Magnetic Resonance Spectroscopy ; Malaria ; Malaria, Falciparum - parasitology ; Metabolites ; Microbiology ; Mitochondria - drug effects ; Mitochondria - metabolism ; Models, Biological ; NMR ; Nuclear magnetic resonance ; Parasites ; Parasites - drug effects ; Parasites - growth &amp; development ; Parasites - metabolism ; Physiological aspects ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - growth &amp; development ; Plasmodium falciparum - metabolism ; Reproduction, Asexual - drug effects</subject><ispartof>BMC biology, 2013-06, Vol.11 (1), p.67-67, Article 67</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 MacRae et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2013 MacRae et al.; licensee BioMed Central Ltd. 2013 MacRae et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-ff006d70d77eae536ca709f8ece0702cd7dde45cdc9fb1f530faa5c4e0f250813</citedby><cites>FETCH-LOGICAL-c655t-ff006d70d77eae536ca709f8ece0702cd7dde45cdc9fb1f530faa5c4e0f250813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704724/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704724/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23763941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacRae, James I</creatorcontrib><creatorcontrib>Dixon, Matthew Wa</creatorcontrib><creatorcontrib>Dearnley, Megan K</creatorcontrib><creatorcontrib>Chua, Hwa H</creatorcontrib><creatorcontrib>Chambers, Jennifer M</creatorcontrib><creatorcontrib>Kenny, Shannon</creatorcontrib><creatorcontrib>Bottova, Iveta</creatorcontrib><creatorcontrib>Tilley, Leann</creatorcontrib><creatorcontrib>McConville, Malcolm J</creatorcontrib><title>Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum</title><title>BMC biology</title><addtitle>BMC Biol</addtitle><description>The carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a canonical mitochondrial tricarboxylic acid (TCA) cycle, and it was recently proposed that they may catabolize glutamine via an atypical branched TCA cycle. Whether these stages catabolize glucose in the TCA cycle and what is the functional significance of mitochondrial metabolism remains unresolved. We reassessed the central carbon metabolism of P. falciparum asexual and sexual blood stages, by metabolically labeling each stage with 13C-glucose and 13C-glutamine, and analyzing isotopic enrichment in key pathways using mass spectrometry. In contrast to previous findings, we found that carbon skeletons derived from both glucose and glutamine are catabolized in a canonical oxidative TCA cycle in both the asexual and sexual blood stages. Flux of glucose carbon skeletons into the TCA cycle is low in the asexual blood stages, with glutamine providing most of the carbon skeletons, but increases dramatically in the gametocyte stages. Increased glucose catabolism in the gametocyte TCA cycle was associated with increased glucose uptake, suggesting that the energy requirements of this stage are high. Significantly, whereas chemical inhibition of the TCA cycle had little effect on the growth or viability of asexual stages, inhibition of the gametocyte TCA cycle led to arrested development and death. Our metabolomics approach has allowed us to revise current models of P. falciparum carbon metabolism. In particular, we found that both asexual and sexual blood stages utilize a conventional TCA cycle to catabolize glucose and glutamine. Gametocyte differentiation is associated with a programmed remodeling of central carbon metabolism that may be required for parasite survival either before or after uptake by the mosquito vector. The increased sensitivity of gametocyte stages to TCA-cycle inhibitors provides a potential target for transmission-blocking drugs.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biotechnology industry</subject><subject>Citric Acid Cycle - drug effects</subject><subject>Erythrocytes - drug effects</subject><subject>Erythrocytes - parasitology</subject><subject>Fluoroacetates - pharmacology</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Glucose - metabolism</subject><subject>Glutamine - metabolism</subject><subject>Humans</subject><subject>International economic relations</subject><subject>Life Cycle Stages - drug effects</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Malaria</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Parasites</subject><subject>Parasites - drug effects</subject><subject>Parasites - growth &amp; development</subject><subject>Parasites - metabolism</subject><subject>Physiological aspects</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - growth &amp; development</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Reproduction, Asexual - drug effects</subject><issn>1741-7007</issn><issn>1741-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkstv1DAQhyMEoqVw5oYscYFDWjuO480Fqap4VCoq4nW1Zu3xris73sYOKv89Dl1Wu4gD8sHz-H4z8niq6jmjp4wtujMmW1ZLSmXNWN3JB9XxLvJwzz6qnqR0Q2kjpOSPq6OGy473LTuu3EeXo17HwYwOPAmYYRm9S4FESxLeTSUIgyGwtZc-RkNShhWmGclrJAE8FDXZwAjJZSSfPKQQjZsCseC1K4kpPK0eFSfhs-19Un179_brxYf66vr95cX5Va07IXJtLaWdkdRIiYCCdxok7e0CNVJJG22kMdgKbXRvl8wKTi2A0C1S2wi6YPykenNfdzMtAxqNQx7Bq83oAow_VQSnDjODW6tV_KG4pK1s2lLg1bbAGG8nTFkFlzR6DwPGKSnWskawvmGLgr78C72J0ziU5ynG-76Mn8k9agUelRtsLH31XFSdC96Wn2C_257-gyrHYHA6DmhdiR8IXh8ICpPxLq9gSkldfvn8_-z190P27J7VY0xpRLubHaNq3jo175Wa96q4qpNF8WJ_5Dv-z5rxXwEY0ZE</recordid><startdate>20130613</startdate><enddate>20130613</enddate><creator>MacRae, James I</creator><creator>Dixon, Matthew Wa</creator><creator>Dearnley, Megan K</creator><creator>Chua, Hwa H</creator><creator>Chambers, Jennifer M</creator><creator>Kenny, Shannon</creator><creator>Bottova, Iveta</creator><creator>Tilley, Leann</creator><creator>McConville, Malcolm J</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20130613</creationdate><title>Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum</title><author>MacRae, James I ; Dixon, Matthew Wa ; Dearnley, Megan K ; Chua, Hwa H ; Chambers, Jennifer M ; Kenny, Shannon ; Bottova, Iveta ; Tilley, Leann ; McConville, Malcolm J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-ff006d70d77eae536ca709f8ece0702cd7dde45cdc9fb1f530faa5c4e0f250813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biotechnology industry</topic><topic>Citric Acid Cycle - drug effects</topic><topic>Erythrocytes - drug effects</topic><topic>Erythrocytes - parasitology</topic><topic>Fluoroacetates - pharmacology</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Glucose - metabolism</topic><topic>Glutamine - metabolism</topic><topic>Humans</topic><topic>International economic relations</topic><topic>Life Cycle Stages - drug effects</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Malaria</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Parasites</topic><topic>Parasites - drug effects</topic><topic>Parasites - growth &amp; development</topic><topic>Parasites - metabolism</topic><topic>Physiological aspects</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - growth &amp; development</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Reproduction, Asexual - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacRae, James I</creatorcontrib><creatorcontrib>Dixon, Matthew Wa</creatorcontrib><creatorcontrib>Dearnley, Megan K</creatorcontrib><creatorcontrib>Chua, Hwa H</creatorcontrib><creatorcontrib>Chambers, Jennifer M</creatorcontrib><creatorcontrib>Kenny, Shannon</creatorcontrib><creatorcontrib>Bottova, Iveta</creatorcontrib><creatorcontrib>Tilley, Leann</creatorcontrib><creatorcontrib>McConville, Malcolm J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacRae, James I</au><au>Dixon, Matthew Wa</au><au>Dearnley, Megan K</au><au>Chua, Hwa H</au><au>Chambers, Jennifer M</au><au>Kenny, Shannon</au><au>Bottova, Iveta</au><au>Tilley, Leann</au><au>McConville, Malcolm J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum</atitle><jtitle>BMC biology</jtitle><addtitle>BMC Biol</addtitle><date>2013-06-13</date><risdate>2013</risdate><volume>11</volume><issue>1</issue><spage>67</spage><epage>67</epage><pages>67-67</pages><artnum>67</artnum><issn>1741-7007</issn><eissn>1741-7007</eissn><abstract>The carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a canonical mitochondrial tricarboxylic acid (TCA) cycle, and it was recently proposed that they may catabolize glutamine via an atypical branched TCA cycle. Whether these stages catabolize glucose in the TCA cycle and what is the functional significance of mitochondrial metabolism remains unresolved. We reassessed the central carbon metabolism of P. falciparum asexual and sexual blood stages, by metabolically labeling each stage with 13C-glucose and 13C-glutamine, and analyzing isotopic enrichment in key pathways using mass spectrometry. In contrast to previous findings, we found that carbon skeletons derived from both glucose and glutamine are catabolized in a canonical oxidative TCA cycle in both the asexual and sexual blood stages. Flux of glucose carbon skeletons into the TCA cycle is low in the asexual blood stages, with glutamine providing most of the carbon skeletons, but increases dramatically in the gametocyte stages. Increased glucose catabolism in the gametocyte TCA cycle was associated with increased glucose uptake, suggesting that the energy requirements of this stage are high. Significantly, whereas chemical inhibition of the TCA cycle had little effect on the growth or viability of asexual stages, inhibition of the gametocyte TCA cycle led to arrested development and death. Our metabolomics approach has allowed us to revise current models of P. falciparum carbon metabolism. In particular, we found that both asexual and sexual blood stages utilize a conventional TCA cycle to catabolize glucose and glutamine. Gametocyte differentiation is associated with a programmed remodeling of central carbon metabolism that may be required for parasite survival either before or after uptake by the mosquito vector. The increased sensitivity of gametocyte stages to TCA-cycle inhibitors provides a potential target for transmission-blocking drugs.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23763941</pmid><doi>10.1186/1741-7007-11-67</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-7007
ispartof BMC biology, 2013-06, Vol.11 (1), p.67-67, Article 67
issn 1741-7007
1741-7007
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3704724
source MEDLINE; Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Analysis
Animals
Biotechnology industry
Citric Acid Cycle - drug effects
Erythrocytes - drug effects
Erythrocytes - parasitology
Fluoroacetates - pharmacology
Gas Chromatography-Mass Spectrometry
Glucose - metabolism
Glutamine - metabolism
Humans
International economic relations
Life Cycle Stages - drug effects
Magnetic Resonance Spectroscopy
Malaria
Malaria, Falciparum - parasitology
Metabolites
Microbiology
Mitochondria - drug effects
Mitochondria - metabolism
Models, Biological
NMR
Nuclear magnetic resonance
Parasites
Parasites - drug effects
Parasites - growth & development
Parasites - metabolism
Physiological aspects
Plasmodium falciparum
Plasmodium falciparum - drug effects
Plasmodium falciparum - growth & development
Plasmodium falciparum - metabolism
Reproduction, Asexual - drug effects
title Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20metabolism%20of%20sexual%20and%20asexual%20blood%20stages%20of%20the%20malaria%20parasite%20Plasmodium%20falciparum&rft.jtitle=BMC%20biology&rft.au=MacRae,%20James%20I&rft.date=2013-06-13&rft.volume=11&rft.issue=1&rft.spage=67&rft.epage=67&rft.pages=67-67&rft.artnum=67&rft.issn=1741-7007&rft.eissn=1741-7007&rft_id=info:doi/10.1186/1741-7007-11-67&rft_dat=%3Cgale_pubme%3EA534639124%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399741178&rft_id=info:pmid/23763941&rft_galeid=A534639124&rfr_iscdi=true