Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair
Fracture healing involves rapid stem and progenitor cell migration, homing, and differentiation. SDF‐1 (CXCL12) is considered a master regulator of CXCR4‐positive stem and progenitor cell trafficking to sites of ischemic (hypoxic) injury and regulates their subsequent differentiation into mature rep...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2012-11, Vol.30 (11), p.1853-1859 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1859 |
---|---|
container_issue | 11 |
container_start_page | 1853 |
container_title | Journal of orthopaedic research |
container_volume | 30 |
creator | Toupadakis, Chrisoula A. Wong, Alice Genetos, Damian C. Chung, Dai-Jung Murugesh, Deepa Anderson, Matthew J. Loots, Gabriela G. Christiansen, Blaine A. Kapatkin, Amy S. Yellowley, Clare E. |
description | Fracture healing involves rapid stem and progenitor cell migration, homing, and differentiation. SDF‐1 (CXCL12) is considered a master regulator of CXCR4‐positive stem and progenitor cell trafficking to sites of ischemic (hypoxic) injury and regulates their subsequent differentiation into mature reparative cells. In this study, we investigated the role of SDF‐1/CXCR4 signaling in fracture healing where vascular disruption results in hypoxia and SDF‐1 expression. Mice were injected with AMD3100, a CXCR4 antagonist, or vehicle twice daily until euthanasia with the intent to impair stem cell homing to the fracture site and/or their differentiation. Fracture healing was evaluated using micro‐computed tomography, histology, quantitative PCR, and mechanical testing. AMD3100 administration resulted in a significantly reduced hyaline cartilage volume (day 14), callus volume (day 42) and mineralized bone volume (day 42) and reduced expression of genes associated with endochondral ossification including collagen Type 1 alpha 1, collagen Type 2 alpha 1, vascular endothelial growth factor, Annexin A5, nitric oxide synthase 2, and mechanistic target of rapamycin. Our data suggest that the SDF‐1/CXCR4 signaling plays a central role in bone healing possibly by regulating the recruitment and/or differentiation of stem and progenitor cells. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1853–1859, 2012 |
doi_str_mv | 10.1002/jor.22145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3704138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093496239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-49ef37d313d335928a5fcaac8766c1bb291a04e8fb377780690f7fd27a0b7a923</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhwB9AOYJEuv6I4_iC1G5pAS2ttBTRmzVx7OCS2IudBfrv8bLtCg5IlnyYZ56Z0YvQc4KPCMZ0fhPiEaWk4g_QjHBelZyK64dohgWrS0zr-gA9SekGYywIbR6jA0q5pI0kM6SXwfflZOJYQDc679IUYXLBF8EWxx9PWR7wugCf3wR92Na3lU-nZyWZL64Xq6pIrvcwON9nbsimVNgIetpEU0SzBhefokcWhmSe3f2H6PPZ26vFu3J5ef5-cbwsNSeSl5U0lomOEdYxtt0PuNUAuhF1rUnbUkkAV6axLRNCNLiW2ArbUQG4FSApO0Rvdt71ph1Np43PtwxqHd0I8VYFcOrfindfVR9-KCZwRViTBS_vBDF835g0qdElbYYBvAmbpAiWrJI1ZTKjr3aojiGlaOx-DMFqG4rKoag_oWT2xd977cn7FDIw3wE_3WBu_29SHy5X98py15HzML_2HRC_qVowwdWXi3OVzSdXTKzUBfsNBwakmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093496239</pqid></control><display><type>article</type><title>Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Toupadakis, Chrisoula A. ; Wong, Alice ; Genetos, Damian C. ; Chung, Dai-Jung ; Murugesh, Deepa ; Anderson, Matthew J. ; Loots, Gabriela G. ; Christiansen, Blaine A. ; Kapatkin, Amy S. ; Yellowley, Clare E.</creator><creatorcontrib>Toupadakis, Chrisoula A. ; Wong, Alice ; Genetos, Damian C. ; Chung, Dai-Jung ; Murugesh, Deepa ; Anderson, Matthew J. ; Loots, Gabriela G. ; Christiansen, Blaine A. ; Kapatkin, Amy S. ; Yellowley, Clare E.</creatorcontrib><description>Fracture healing involves rapid stem and progenitor cell migration, homing, and differentiation. SDF‐1 (CXCL12) is considered a master regulator of CXCR4‐positive stem and progenitor cell trafficking to sites of ischemic (hypoxic) injury and regulates their subsequent differentiation into mature reparative cells. In this study, we investigated the role of SDF‐1/CXCR4 signaling in fracture healing where vascular disruption results in hypoxia and SDF‐1 expression. Mice were injected with AMD3100, a CXCR4 antagonist, or vehicle twice daily until euthanasia with the intent to impair stem cell homing to the fracture site and/or their differentiation. Fracture healing was evaluated using micro‐computed tomography, histology, quantitative PCR, and mechanical testing. AMD3100 administration resulted in a significantly reduced hyaline cartilage volume (day 14), callus volume (day 42) and mineralized bone volume (day 42) and reduced expression of genes associated with endochondral ossification including collagen Type 1 alpha 1, collagen Type 2 alpha 1, vascular endothelial growth factor, Annexin A5, nitric oxide synthase 2, and mechanistic target of rapamycin. Our data suggest that the SDF‐1/CXCR4 signaling plays a central role in bone healing possibly by regulating the recruitment and/or differentiation of stem and progenitor cells. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1853–1859, 2012</description><identifier>ISSN: 0736-0266</identifier><identifier>EISSN: 1554-527X</identifier><identifier>DOI: 10.1002/jor.22145</identifier><identifier>PMID: 22592891</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>adult-derived stem cells ; AMD3100 ; Animals ; Biomechanical Phenomena ; Chemokine CXCL12 - metabolism ; CXCR4 ; fracture ; Fracture Healing ; Heterocyclic Compounds - pharmacology ; Immunohistochemistry ; In Situ Hybridization ; Male ; Mice ; Mice, Inbred C57BL ; Osteogenesis ; Polymerase Chain Reaction ; Receptors, CXCR4 - antagonists & inhibitors ; Receptors, CXCR4 - metabolism ; SDF-1 ; X-Ray Microtomography</subject><ispartof>Journal of orthopaedic research, 2012-11, Vol.30 (11), p.1853-1859</ispartof><rights>Copyright © 2012 Orthopaedic Research Society</rights><rights>Copyright © 2012 Orthopaedic Research Society.</rights><rights>2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-49ef37d313d335928a5fcaac8766c1bb291a04e8fb377780690f7fd27a0b7a923</citedby><cites>FETCH-LOGICAL-c5195-49ef37d313d335928a5fcaac8766c1bb291a04e8fb377780690f7fd27a0b7a923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjor.22145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjor.22145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22592891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toupadakis, Chrisoula A.</creatorcontrib><creatorcontrib>Wong, Alice</creatorcontrib><creatorcontrib>Genetos, Damian C.</creatorcontrib><creatorcontrib>Chung, Dai-Jung</creatorcontrib><creatorcontrib>Murugesh, Deepa</creatorcontrib><creatorcontrib>Anderson, Matthew J.</creatorcontrib><creatorcontrib>Loots, Gabriela G.</creatorcontrib><creatorcontrib>Christiansen, Blaine A.</creatorcontrib><creatorcontrib>Kapatkin, Amy S.</creatorcontrib><creatorcontrib>Yellowley, Clare E.</creatorcontrib><title>Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair</title><title>Journal of orthopaedic research</title><addtitle>J. Orthop. Res</addtitle><description>Fracture healing involves rapid stem and progenitor cell migration, homing, and differentiation. SDF‐1 (CXCL12) is considered a master regulator of CXCR4‐positive stem and progenitor cell trafficking to sites of ischemic (hypoxic) injury and regulates their subsequent differentiation into mature reparative cells. In this study, we investigated the role of SDF‐1/CXCR4 signaling in fracture healing where vascular disruption results in hypoxia and SDF‐1 expression. Mice were injected with AMD3100, a CXCR4 antagonist, or vehicle twice daily until euthanasia with the intent to impair stem cell homing to the fracture site and/or their differentiation. Fracture healing was evaluated using micro‐computed tomography, histology, quantitative PCR, and mechanical testing. AMD3100 administration resulted in a significantly reduced hyaline cartilage volume (day 14), callus volume (day 42) and mineralized bone volume (day 42) and reduced expression of genes associated with endochondral ossification including collagen Type 1 alpha 1, collagen Type 2 alpha 1, vascular endothelial growth factor, Annexin A5, nitric oxide synthase 2, and mechanistic target of rapamycin. Our data suggest that the SDF‐1/CXCR4 signaling plays a central role in bone healing possibly by regulating the recruitment and/or differentiation of stem and progenitor cells. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1853–1859, 2012</description><subject>adult-derived stem cells</subject><subject>AMD3100</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>CXCR4</subject><subject>fracture</subject><subject>Fracture Healing</subject><subject>Heterocyclic Compounds - pharmacology</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Osteogenesis</subject><subject>Polymerase Chain Reaction</subject><subject>Receptors, CXCR4 - antagonists & inhibitors</subject><subject>Receptors, CXCR4 - metabolism</subject><subject>SDF-1</subject><subject>X-Ray Microtomography</subject><issn>0736-0266</issn><issn>1554-527X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EokvhwB9AOYJEuv6I4_iC1G5pAS2ttBTRmzVx7OCS2IudBfrv8bLtCg5IlnyYZ56Z0YvQc4KPCMZ0fhPiEaWk4g_QjHBelZyK64dohgWrS0zr-gA9SekGYywIbR6jA0q5pI0kM6SXwfflZOJYQDc679IUYXLBF8EWxx9PWR7wugCf3wR92Na3lU-nZyWZL64Xq6pIrvcwON9nbsimVNgIetpEU0SzBhefokcWhmSe3f2H6PPZ26vFu3J5ef5-cbwsNSeSl5U0lomOEdYxtt0PuNUAuhF1rUnbUkkAV6axLRNCNLiW2ArbUQG4FSApO0Rvdt71ph1Np43PtwxqHd0I8VYFcOrfindfVR9-KCZwRViTBS_vBDF835g0qdElbYYBvAmbpAiWrJI1ZTKjr3aojiGlaOx-DMFqG4rKoag_oWT2xd977cn7FDIw3wE_3WBu_29SHy5X98py15HzML_2HRC_qVowwdWXi3OVzSdXTKzUBfsNBwakmA</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Toupadakis, Chrisoula A.</creator><creator>Wong, Alice</creator><creator>Genetos, Damian C.</creator><creator>Chung, Dai-Jung</creator><creator>Murugesh, Deepa</creator><creator>Anderson, Matthew J.</creator><creator>Loots, Gabriela G.</creator><creator>Christiansen, Blaine A.</creator><creator>Kapatkin, Amy S.</creator><creator>Yellowley, Clare E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201211</creationdate><title>Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair</title><author>Toupadakis, Chrisoula A. ; Wong, Alice ; Genetos, Damian C. ; Chung, Dai-Jung ; Murugesh, Deepa ; Anderson, Matthew J. ; Loots, Gabriela G. ; Christiansen, Blaine A. ; Kapatkin, Amy S. ; Yellowley, Clare E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-49ef37d313d335928a5fcaac8766c1bb291a04e8fb377780690f7fd27a0b7a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adult-derived stem cells</topic><topic>AMD3100</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>CXCR4</topic><topic>fracture</topic><topic>Fracture Healing</topic><topic>Heterocyclic Compounds - pharmacology</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Osteogenesis</topic><topic>Polymerase Chain Reaction</topic><topic>Receptors, CXCR4 - antagonists & inhibitors</topic><topic>Receptors, CXCR4 - metabolism</topic><topic>SDF-1</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toupadakis, Chrisoula A.</creatorcontrib><creatorcontrib>Wong, Alice</creatorcontrib><creatorcontrib>Genetos, Damian C.</creatorcontrib><creatorcontrib>Chung, Dai-Jung</creatorcontrib><creatorcontrib>Murugesh, Deepa</creatorcontrib><creatorcontrib>Anderson, Matthew J.</creatorcontrib><creatorcontrib>Loots, Gabriela G.</creatorcontrib><creatorcontrib>Christiansen, Blaine A.</creatorcontrib><creatorcontrib>Kapatkin, Amy S.</creatorcontrib><creatorcontrib>Yellowley, Clare E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of orthopaedic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toupadakis, Chrisoula A.</au><au>Wong, Alice</au><au>Genetos, Damian C.</au><au>Chung, Dai-Jung</au><au>Murugesh, Deepa</au><au>Anderson, Matthew J.</au><au>Loots, Gabriela G.</au><au>Christiansen, Blaine A.</au><au>Kapatkin, Amy S.</au><au>Yellowley, Clare E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair</atitle><jtitle>Journal of orthopaedic research</jtitle><addtitle>J. Orthop. Res</addtitle><date>2012-11</date><risdate>2012</risdate><volume>30</volume><issue>11</issue><spage>1853</spage><epage>1859</epage><pages>1853-1859</pages><issn>0736-0266</issn><eissn>1554-527X</eissn><abstract>Fracture healing involves rapid stem and progenitor cell migration, homing, and differentiation. SDF‐1 (CXCL12) is considered a master regulator of CXCR4‐positive stem and progenitor cell trafficking to sites of ischemic (hypoxic) injury and regulates their subsequent differentiation into mature reparative cells. In this study, we investigated the role of SDF‐1/CXCR4 signaling in fracture healing where vascular disruption results in hypoxia and SDF‐1 expression. Mice were injected with AMD3100, a CXCR4 antagonist, or vehicle twice daily until euthanasia with the intent to impair stem cell homing to the fracture site and/or their differentiation. Fracture healing was evaluated using micro‐computed tomography, histology, quantitative PCR, and mechanical testing. AMD3100 administration resulted in a significantly reduced hyaline cartilage volume (day 14), callus volume (day 42) and mineralized bone volume (day 42) and reduced expression of genes associated with endochondral ossification including collagen Type 1 alpha 1, collagen Type 2 alpha 1, vascular endothelial growth factor, Annexin A5, nitric oxide synthase 2, and mechanistic target of rapamycin. Our data suggest that the SDF‐1/CXCR4 signaling plays a central role in bone healing possibly by regulating the recruitment and/or differentiation of stem and progenitor cells. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1853–1859, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22592891</pmid><doi>10.1002/jor.22145</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0736-0266 |
ispartof | Journal of orthopaedic research, 2012-11, Vol.30 (11), p.1853-1859 |
issn | 0736-0266 1554-527X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3704138 |
source | MEDLINE; Access via Wiley Online Library; Wiley Online Library (Open Access Collection) |
subjects | adult-derived stem cells AMD3100 Animals Biomechanical Phenomena Chemokine CXCL12 - metabolism CXCR4 fracture Fracture Healing Heterocyclic Compounds - pharmacology Immunohistochemistry In Situ Hybridization Male Mice Mice, Inbred C57BL Osteogenesis Polymerase Chain Reaction Receptors, CXCR4 - antagonists & inhibitors Receptors, CXCR4 - metabolism SDF-1 X-Ray Microtomography |
title | Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20administration%20of%20AMD3100,%20an%20antagonist%20of%20SDF-1/CXCR4%20signaling,%20alters%20fracture%20repair&rft.jtitle=Journal%20of%20orthopaedic%20research&rft.au=Toupadakis,%20Chrisoula%20A.&rft.date=2012-11&rft.volume=30&rft.issue=11&rft.spage=1853&rft.epage=1859&rft.pages=1853-1859&rft.issn=0736-0266&rft.eissn=1554-527X&rft_id=info:doi/10.1002/jor.22145&rft_dat=%3Cproquest_pubme%3E1093496239%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093496239&rft_id=info:pmid/22592891&rfr_iscdi=true |