Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO
Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed potential field network (SPFN), and we prese...
Gespeichert in:
Veröffentlicht in: | Computational Intelligence and Neuroscience 2013-01, Vol.2013 (2013), p.133-143 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2013 |
container_start_page | 133 |
container_title | Computational Intelligence and Neuroscience |
container_volume | 2013 |
creator | Kou, Jialiang Xiong, Shengwu Fang, Zhixiang Zong, Xinlu Chen, Zhong |
description | Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed potential field network (SPFN), and we presented SPFN-based ACO algorithm (SPFN-ACO) to solve this problem based on the proposed model. In Wuhan Sports Center case, we compared SPFN-ACO algorithm with HMERP-ACO algorithm and traditional ACO algorithm under three evacuation objectives, namely, total evacuation time, total evacuation route length, and cumulative congestion degree. The experimental results show that SPFN-ACO algorithm has a better performance while comparing with HMERP-ACO algorithm and traditional ACO algorithm for solving multi-objective evacuation routes optimization problem. |
doi_str_mv | 10.1155/2013/369016 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3703855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A373254246</galeid><airiti_id>P20160527002_201312_201706200023_201706200023_133_143</airiti_id><sourcerecordid>A373254246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a535t-7a7a9bd0eed2249e7cc061b15646bb44cb52c529d95265383dd5e14b25c51c33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEoqVw4gyyxAWBlvojtpML0rJqAWlhK1rOlmNPtl6SOMTOVvDrcZqyoicOlj2eR4_Gep1lzwl-RwjnpxQTdspEiYl4kB0TUcgFp5I9PJwFP8qehLDDmEuO6ePsiLJCECGL46z7MjbR-WoHJro9oE0fXet-63TXIV-js70241x982OEgFyHLqO2bmzR9-C6Lbocexh6H8CiCx-hi0436NxBY9FXiDd--IE-6Km7XG2eZo9q3QR4drefZFfnZ1erT4v15uPn1XK90JzxuJBa6rKyGMBSmpcgjcGCVISLXFRVnpuKU8Npacvpdaxg1nIgeUW54cQwdpK9n7X9WLVgTRpq0I3qB9fq4Zfy2qn7nc5dq63fKyYxKzhPgtd3gsH_HCFE1bpgoGl0B34MiuSY4KIsS5nQVzO61Q0o19U-Gc2EqyWTjPKc5iJRb2fKDD6EAerDMASrKUY1xajmGBP98t_5D-zf3BLwZgauXWf1jfuP7cUMQ0Kg1gc4F4LjSbae-9oNLjq18-PQpXTURbIInD4TxvTWSG43iQXF6YrdLwhLK2fsD-3Owz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1401089997</pqid></control><display><type>article</type><title>Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kou, Jialiang ; Xiong, Shengwu ; Fang, Zhixiang ; Zong, Xinlu ; Chen, Zhong</creator><contributor>Lin, Cheng-Jian</contributor><creatorcontrib>Kou, Jialiang ; Xiong, Shengwu ; Fang, Zhixiang ; Zong, Xinlu ; Chen, Zhong ; Lin, Cheng-Jian</creatorcontrib><description>Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed potential field network (SPFN), and we presented SPFN-based ACO algorithm (SPFN-ACO) to solve this problem based on the proposed model. In Wuhan Sports Center case, we compared SPFN-ACO algorithm with HMERP-ACO algorithm and traditional ACO algorithm under three evacuation objectives, namely, total evacuation time, total evacuation route length, and cumulative congestion degree. The experimental results show that SPFN-ACO algorithm has a better performance while comparing with HMERP-ACO algorithm and traditional ACO algorithm for solving multi-objective evacuation routes optimization problem.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2013/369016</identifier><identifier>PMID: 23861678</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Algorithms ; China ; Computer Simulation ; Evacuation of civilians ; Humans ; Models, Theoretical ; Psychological aspects ; Rescue Work - methods ; Safety and security measures ; Stadiums</subject><ispartof>Computational Intelligence and Neuroscience, 2013-01, Vol.2013 (2013), p.133-143</ispartof><rights>Copyright © 2013 Jialiang Kou et al.</rights><rights>COPYRIGHT 2013 John Wiley & Sons, Inc.</rights><rights>Copyright © 2013 Jialiang Kou et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a535t-7a7a9bd0eed2249e7cc061b15646bb44cb52c529d95265383dd5e14b25c51c33</citedby><cites>FETCH-LOGICAL-a535t-7a7a9bd0eed2249e7cc061b15646bb44cb52c529d95265383dd5e14b25c51c33</cites><orcidid>0000-0002-7483-9699 ; 0000-0003-1651-878X ; 0000-0001-8898-6406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703855/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703855/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lin, Cheng-Jian</contributor><creatorcontrib>Kou, Jialiang</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><creatorcontrib>Fang, Zhixiang</creatorcontrib><creatorcontrib>Zong, Xinlu</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><title>Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO</title><title>Computational Intelligence and Neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed potential field network (SPFN), and we presented SPFN-based ACO algorithm (SPFN-ACO) to solve this problem based on the proposed model. In Wuhan Sports Center case, we compared SPFN-ACO algorithm with HMERP-ACO algorithm and traditional ACO algorithm under three evacuation objectives, namely, total evacuation time, total evacuation route length, and cumulative congestion degree. The experimental results show that SPFN-ACO algorithm has a better performance while comparing with HMERP-ACO algorithm and traditional ACO algorithm for solving multi-objective evacuation routes optimization problem.</description><subject>Algorithms</subject><subject>China</subject><subject>Computer Simulation</subject><subject>Evacuation of civilians</subject><subject>Humans</subject><subject>Models, Theoretical</subject><subject>Psychological aspects</subject><subject>Rescue Work - methods</subject><subject>Safety and security measures</subject><subject>Stadiums</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEoqVw4gyyxAWBlvojtpML0rJqAWlhK1rOlmNPtl6SOMTOVvDrcZqyoicOlj2eR4_Gep1lzwl-RwjnpxQTdspEiYl4kB0TUcgFp5I9PJwFP8qehLDDmEuO6ePsiLJCECGL46z7MjbR-WoHJro9oE0fXet-63TXIV-js70241x982OEgFyHLqO2bmzR9-C6Lbocexh6H8CiCx-hi0436NxBY9FXiDd--IE-6Km7XG2eZo9q3QR4drefZFfnZ1erT4v15uPn1XK90JzxuJBa6rKyGMBSmpcgjcGCVISLXFRVnpuKU8Npacvpdaxg1nIgeUW54cQwdpK9n7X9WLVgTRpq0I3qB9fq4Zfy2qn7nc5dq63fKyYxKzhPgtd3gsH_HCFE1bpgoGl0B34MiuSY4KIsS5nQVzO61Q0o19U-Gc2EqyWTjPKc5iJRb2fKDD6EAerDMASrKUY1xajmGBP98t_5D-zf3BLwZgauXWf1jfuP7cUMQ0Kg1gc4F4LjSbae-9oNLjq18-PQpXTURbIInD4TxvTWSG43iQXF6YrdLwhLK2fsD-3Owz8</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Kou, Jialiang</creator><creator>Xiong, Shengwu</creator><creator>Fang, Zhixiang</creator><creator>Zong, Xinlu</creator><creator>Chen, Zhong</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7483-9699</orcidid><orcidid>https://orcid.org/0000-0003-1651-878X</orcidid><orcidid>https://orcid.org/0000-0001-8898-6406</orcidid></search><sort><creationdate>20130101</creationdate><title>Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO</title><author>Kou, Jialiang ; Xiong, Shengwu ; Fang, Zhixiang ; Zong, Xinlu ; Chen, Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a535t-7a7a9bd0eed2249e7cc061b15646bb44cb52c529d95265383dd5e14b25c51c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>China</topic><topic>Computer Simulation</topic><topic>Evacuation of civilians</topic><topic>Humans</topic><topic>Models, Theoretical</topic><topic>Psychological aspects</topic><topic>Rescue Work - methods</topic><topic>Safety and security measures</topic><topic>Stadiums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Jialiang</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><creatorcontrib>Fang, Zhixiang</creatorcontrib><creatorcontrib>Zong, Xinlu</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational Intelligence and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Jialiang</au><au>Xiong, Shengwu</au><au>Fang, Zhixiang</au><au>Zong, Xinlu</au><au>Chen, Zhong</au><au>Lin, Cheng-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO</atitle><jtitle>Computational Intelligence and Neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Multiobjective evacuation routes optimization problem is defined to find out optimal evacuation routes for a group of evacuees under multiple evacuation objectives. For improving the evacuation efficiency, we abstracted the evacuation zone as a superposed potential field network (SPFN), and we presented SPFN-based ACO algorithm (SPFN-ACO) to solve this problem based on the proposed model. In Wuhan Sports Center case, we compared SPFN-ACO algorithm with HMERP-ACO algorithm and traditional ACO algorithm under three evacuation objectives, namely, total evacuation time, total evacuation route length, and cumulative congestion degree. The experimental results show that SPFN-ACO algorithm has a better performance while comparing with HMERP-ACO algorithm and traditional ACO algorithm for solving multi-objective evacuation routes optimization problem.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>23861678</pmid><doi>10.1155/2013/369016</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7483-9699</orcidid><orcidid>https://orcid.org/0000-0003-1651-878X</orcidid><orcidid>https://orcid.org/0000-0001-8898-6406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational Intelligence and Neuroscience, 2013-01, Vol.2013 (2013), p.133-143 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3703855 |
source | MEDLINE; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms China Computer Simulation Evacuation of civilians Humans Models, Theoretical Psychological aspects Rescue Work - methods Safety and security measures Stadiums |
title | Multiobjective Optimization of Evacuation Routes in Stadium Using Superposed Potential Field Network Based ACO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Optimization%20of%20Evacuation%20Routes%20in%20Stadium%20Using%20Superposed%20Potential%20Field%20Network%20Based%20ACO&rft.jtitle=Computational%20Intelligence%20and%20Neuroscience&rft.au=Kou,%20Jialiang&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2013/369016&rft_dat=%3Cgale_pubme%3EA373254246%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1401089997&rft_id=info:pmid/23861678&rft_galeid=A373254246&rft_airiti_id=P20160527002_201312_201706200023_201706200023_133_143&rfr_iscdi=true |