Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance

Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2013-07, Vol.122 (1), p.143-153
Hauptverfasser: Roodhart, Jeanine M.L., He, Huanhuan, Daenen, Laura G.M., Monvoisin, Arnaud, Barber, Chad L., van Amersfoort, Miranda, Hofmann, Jennifer J., Radtke, Freddy, Lane, Timothy F., Voest, Emile E., Iruela-Arispe, M. Luisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1
container_start_page 143
container_title Blood
container_volume 122
creator Roodhart, Jeanine M.L.
He, Huanhuan
Daenen, Laura G.M.
Monvoisin, Arnaud
Barber, Chad L.
van Amersfoort, Miranda
Hofmann, Jennifer J.
Radtke, Freddy
Lane, Timothy F.
Voest, Emile E.
Iruela-Arispe, M. Luisa
description Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy. • Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors.
doi_str_mv 10.1182/blood-2012-11-459347
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3701902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120572133</els_id><sourcerecordid>1398435413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRAVHQp_gFCWsAjcazsvFkhVBS3SqGxgbTn2zYxREg92EsSOf-AP-RKcTimPBSvL555z7uMw9gThBWLNX7a99zbngDxHzGXRCFndYxsseJ0DcLjPNgBQ5rKp8JQ9jPETAErBiwfslIuyASmrDTPXfjJ7zALt5l5PFDM97pzP43w4-DC5hbLWj5QNOgT_5ce375ZCAm1mqO9j5sZscIZeJX1Pix4NZZPPzJ4GHyi6OK3QI3bS6T7S49v3jH18--bDxVW-fX_57uJ8m5s045TXnKCTRAJLjlWbQFParmhlI2ssKl12orSisLxGSxyhqKtKagRRtMIgtOKMvT76HuZ2IGtonILu1SG4NP1X5bVTf1dGt1c7vyhRATbAk8Hzo8H-H9nV-VatGEgQopC4YOI-u20W_OeZ4qQGF9ej6JH8HBWKppYrVySqPFJN8DEG6u68EdSapbrJUq1Zpr86ZplkT_9c5070K7zf-1I66uIoqGgcpYNbF8hMynr3_w4_ATeDskc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398435413</pqid></control><display><type>article</type><title>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Roodhart, Jeanine M.L. ; He, Huanhuan ; Daenen, Laura G.M. ; Monvoisin, Arnaud ; Barber, Chad L. ; van Amersfoort, Miranda ; Hofmann, Jennifer J. ; Radtke, Freddy ; Lane, Timothy F. ; Voest, Emile E. ; Iruela-Arispe, M. Luisa</creator><creatorcontrib>Roodhart, Jeanine M.L. ; He, Huanhuan ; Daenen, Laura G.M. ; Monvoisin, Arnaud ; Barber, Chad L. ; van Amersfoort, Miranda ; Hofmann, Jennifer J. ; Radtke, Freddy ; Lane, Timothy F. ; Voest, Emile E. ; Iruela-Arispe, M. Luisa</creatorcontrib><description>Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy. • Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2012-11-459347</identifier><identifier>PMID: 23690447</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antigens, CD ; Antigens, CD - metabolism ; Antineoplastic Agents ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents, Phytogenic ; Antineoplastic Agents, Phytogenic - pharmacology ; Bone Marrow Cells ; Bone Marrow Cells - cytology ; Bone Marrow Cells - physiology ; Cadherins ; Cadherins - metabolism ; Carcinoma, Lewis Lung ; Carcinoma, Lewis Lung - drug therapy ; Carcinoma, Lewis Lung - genetics ; Cisplatin ; Cisplatin - pharmacology ; Colorectal Neoplasms ; Colorectal Neoplasms - drug therapy ; Colorectal Neoplasms - genetics ; Drug Resistance, Neoplasm ; Drug Resistance, Neoplasm - physiology ; Life Sciences ; Mammary Neoplasms, Animal ; Mammary Neoplasms, Animal - drug therapy ; Mammary Neoplasms, Animal - genetics ; Mice ; Mice, 129 Strain ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; Mice, Transgenic ; Paclitaxel ; Paclitaxel - pharmacology ; Receptor, Notch1 ; Receptor, Notch1 - genetics ; Receptor, Notch1 - physiology ; Vascular Biology ; Xenograft Model Antitumor Assays</subject><ispartof>Blood, 2013-07, Vol.122 (1), p.143-153</ispartof><rights>2013 American Society of Hematology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 by The American Society of Hematology 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</citedby><cites>FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04033541$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roodhart, Jeanine M.L.</creatorcontrib><creatorcontrib>He, Huanhuan</creatorcontrib><creatorcontrib>Daenen, Laura G.M.</creatorcontrib><creatorcontrib>Monvoisin, Arnaud</creatorcontrib><creatorcontrib>Barber, Chad L.</creatorcontrib><creatorcontrib>van Amersfoort, Miranda</creatorcontrib><creatorcontrib>Hofmann, Jennifer J.</creatorcontrib><creatorcontrib>Radtke, Freddy</creatorcontrib><creatorcontrib>Lane, Timothy F.</creatorcontrib><creatorcontrib>Voest, Emile E.</creatorcontrib><creatorcontrib>Iruela-Arispe, M. Luisa</creatorcontrib><title>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</title><title>Blood</title><addtitle>Blood</addtitle><description>Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy. • Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors.</description><subject>Animals</subject><subject>Antigens, CD</subject><subject>Antigens, CD - metabolism</subject><subject>Antineoplastic Agents</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents, Phytogenic</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Bone Marrow Cells</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - physiology</subject><subject>Cadherins</subject><subject>Cadherins - metabolism</subject><subject>Carcinoma, Lewis Lung</subject><subject>Carcinoma, Lewis Lung - drug therapy</subject><subject>Carcinoma, Lewis Lung - genetics</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Colorectal Neoplasms</subject><subject>Colorectal Neoplasms - drug therapy</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Drug Resistance, Neoplasm</subject><subject>Drug Resistance, Neoplasm - physiology</subject><subject>Life Sciences</subject><subject>Mammary Neoplasms, Animal</subject><subject>Mammary Neoplasms, Animal - drug therapy</subject><subject>Mammary Neoplasms, Animal - genetics</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Nude</subject><subject>Mice, Transgenic</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Receptor, Notch1</subject><subject>Receptor, Notch1 - genetics</subject><subject>Receptor, Notch1 - physiology</subject><subject>Vascular Biology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu1DAUtRAVHQp_gFCWsAjcazsvFkhVBS3SqGxgbTn2zYxREg92EsSOf-AP-RKcTimPBSvL555z7uMw9gThBWLNX7a99zbngDxHzGXRCFndYxsseJ0DcLjPNgBQ5rKp8JQ9jPETAErBiwfslIuyASmrDTPXfjJ7zALt5l5PFDM97pzP43w4-DC5hbLWj5QNOgT_5ce375ZCAm1mqO9j5sZscIZeJX1Pix4NZZPPzJ4GHyi6OK3QI3bS6T7S49v3jH18--bDxVW-fX_57uJ8m5s045TXnKCTRAJLjlWbQFParmhlI2ssKl12orSisLxGSxyhqKtKagRRtMIgtOKMvT76HuZ2IGtonILu1SG4NP1X5bVTf1dGt1c7vyhRATbAk8Hzo8H-H9nV-VatGEgQopC4YOI-u20W_OeZ4qQGF9ej6JH8HBWKppYrVySqPFJN8DEG6u68EdSapbrJUq1Zpr86ZplkT_9c5070K7zf-1I66uIoqGgcpYNbF8hMynr3_w4_ATeDskc</recordid><startdate>20130704</startdate><enddate>20130704</enddate><creator>Roodhart, Jeanine M.L.</creator><creator>He, Huanhuan</creator><creator>Daenen, Laura G.M.</creator><creator>Monvoisin, Arnaud</creator><creator>Barber, Chad L.</creator><creator>van Amersfoort, Miranda</creator><creator>Hofmann, Jennifer J.</creator><creator>Radtke, Freddy</creator><creator>Lane, Timothy F.</creator><creator>Voest, Emile E.</creator><creator>Iruela-Arispe, M. Luisa</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20130704</creationdate><title>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</title><author>Roodhart, Jeanine M.L. ; He, Huanhuan ; Daenen, Laura G.M. ; Monvoisin, Arnaud ; Barber, Chad L. ; van Amersfoort, Miranda ; Hofmann, Jennifer J. ; Radtke, Freddy ; Lane, Timothy F. ; Voest, Emile E. ; Iruela-Arispe, M. Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antigens, CD</topic><topic>Antigens, CD - metabolism</topic><topic>Antineoplastic Agents</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents, Phytogenic</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Bone Marrow Cells</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - physiology</topic><topic>Cadherins</topic><topic>Cadherins - metabolism</topic><topic>Carcinoma, Lewis Lung</topic><topic>Carcinoma, Lewis Lung - drug therapy</topic><topic>Carcinoma, Lewis Lung - genetics</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Colorectal Neoplasms</topic><topic>Colorectal Neoplasms - drug therapy</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Drug Resistance, Neoplasm</topic><topic>Drug Resistance, Neoplasm - physiology</topic><topic>Life Sciences</topic><topic>Mammary Neoplasms, Animal</topic><topic>Mammary Neoplasms, Animal - drug therapy</topic><topic>Mammary Neoplasms, Animal - genetics</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Nude</topic><topic>Mice, Transgenic</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Receptor, Notch1</topic><topic>Receptor, Notch1 - genetics</topic><topic>Receptor, Notch1 - physiology</topic><topic>Vascular Biology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roodhart, Jeanine M.L.</creatorcontrib><creatorcontrib>He, Huanhuan</creatorcontrib><creatorcontrib>Daenen, Laura G.M.</creatorcontrib><creatorcontrib>Monvoisin, Arnaud</creatorcontrib><creatorcontrib>Barber, Chad L.</creatorcontrib><creatorcontrib>van Amersfoort, Miranda</creatorcontrib><creatorcontrib>Hofmann, Jennifer J.</creatorcontrib><creatorcontrib>Radtke, Freddy</creatorcontrib><creatorcontrib>Lane, Timothy F.</creatorcontrib><creatorcontrib>Voest, Emile E.</creatorcontrib><creatorcontrib>Iruela-Arispe, M. Luisa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roodhart, Jeanine M.L.</au><au>He, Huanhuan</au><au>Daenen, Laura G.M.</au><au>Monvoisin, Arnaud</au><au>Barber, Chad L.</au><au>van Amersfoort, Miranda</au><au>Hofmann, Jennifer J.</au><au>Radtke, Freddy</au><au>Lane, Timothy F.</au><au>Voest, Emile E.</au><au>Iruela-Arispe, M. Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2013-07-04</date><risdate>2013</risdate><volume>122</volume><issue>1</issue><spage>143</spage><epage>153</epage><pages>143-153</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy. • Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23690447</pmid><doi>10.1182/blood-2012-11-459347</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2013-07, Vol.122 (1), p.143-153
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3701902
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Antigens, CD
Antigens, CD - metabolism
Antineoplastic Agents
Antineoplastic Agents - pharmacology
Antineoplastic Agents, Phytogenic
Antineoplastic Agents, Phytogenic - pharmacology
Bone Marrow Cells
Bone Marrow Cells - cytology
Bone Marrow Cells - physiology
Cadherins
Cadherins - metabolism
Carcinoma, Lewis Lung
Carcinoma, Lewis Lung - drug therapy
Carcinoma, Lewis Lung - genetics
Cisplatin
Cisplatin - pharmacology
Colorectal Neoplasms
Colorectal Neoplasms - drug therapy
Colorectal Neoplasms - genetics
Drug Resistance, Neoplasm
Drug Resistance, Neoplasm - physiology
Life Sciences
Mammary Neoplasms, Animal
Mammary Neoplasms, Animal - drug therapy
Mammary Neoplasms, Animal - genetics
Mice
Mice, 129 Strain
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Nude
Mice, Transgenic
Paclitaxel
Paclitaxel - pharmacology
Receptor, Notch1
Receptor, Notch1 - genetics
Receptor, Notch1 - physiology
Vascular Biology
Xenograft Model Antitumor Assays
title Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notch1%20regulates%20angio-supportive%20bone%20marrow%E2%80%93derived%20cells%20in%20mice:%20relevance%20to%20chemoresistance&rft.jtitle=Blood&rft.au=Roodhart,%20Jeanine%20M.L.&rft.date=2013-07-04&rft.volume=122&rft.issue=1&rft.spage=143&rft.epage=153&rft.pages=143-153&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2012-11-459347&rft_dat=%3Cproquest_pubme%3E1398435413%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398435413&rft_id=info:pmid/23690447&rft_els_id=S0006497120572133&rfr_iscdi=true