Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance
Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulat...
Gespeichert in:
Veröffentlicht in: | Blood 2013-07, Vol.122 (1), p.143-153 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 1 |
container_start_page | 143 |
container_title | Blood |
container_volume | 122 |
creator | Roodhart, Jeanine M.L. He, Huanhuan Daenen, Laura G.M. Monvoisin, Arnaud Barber, Chad L. van Amersfoort, Miranda Hofmann, Jennifer J. Radtke, Freddy Lane, Timothy F. Voest, Emile E. Iruela-Arispe, M. Luisa |
description | Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy.
• Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors. |
doi_str_mv | 10.1182/blood-2012-11-459347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3701902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120572133</els_id><sourcerecordid>1398435413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRAVHQp_gFCWsAjcazsvFkhVBS3SqGxgbTn2zYxREg92EsSOf-AP-RKcTimPBSvL555z7uMw9gThBWLNX7a99zbngDxHzGXRCFndYxsseJ0DcLjPNgBQ5rKp8JQ9jPETAErBiwfslIuyASmrDTPXfjJ7zALt5l5PFDM97pzP43w4-DC5hbLWj5QNOgT_5ce375ZCAm1mqO9j5sZscIZeJX1Pix4NZZPPzJ4GHyi6OK3QI3bS6T7S49v3jH18--bDxVW-fX_57uJ8m5s045TXnKCTRAJLjlWbQFParmhlI2ssKl12orSisLxGSxyhqKtKagRRtMIgtOKMvT76HuZ2IGtonILu1SG4NP1X5bVTf1dGt1c7vyhRATbAk8Hzo8H-H9nV-VatGEgQopC4YOI-u20W_OeZ4qQGF9ej6JH8HBWKppYrVySqPFJN8DEG6u68EdSapbrJUq1Zpr86ZplkT_9c5070K7zf-1I66uIoqGgcpYNbF8hMynr3_w4_ATeDskc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398435413</pqid></control><display><type>article</type><title>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Roodhart, Jeanine M.L. ; He, Huanhuan ; Daenen, Laura G.M. ; Monvoisin, Arnaud ; Barber, Chad L. ; van Amersfoort, Miranda ; Hofmann, Jennifer J. ; Radtke, Freddy ; Lane, Timothy F. ; Voest, Emile E. ; Iruela-Arispe, M. Luisa</creator><creatorcontrib>Roodhart, Jeanine M.L. ; He, Huanhuan ; Daenen, Laura G.M. ; Monvoisin, Arnaud ; Barber, Chad L. ; van Amersfoort, Miranda ; Hofmann, Jennifer J. ; Radtke, Freddy ; Lane, Timothy F. ; Voest, Emile E. ; Iruela-Arispe, M. Luisa</creatorcontrib><description>Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy.
• Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2012-11-459347</identifier><identifier>PMID: 23690447</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antigens, CD ; Antigens, CD - metabolism ; Antineoplastic Agents ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents, Phytogenic ; Antineoplastic Agents, Phytogenic - pharmacology ; Bone Marrow Cells ; Bone Marrow Cells - cytology ; Bone Marrow Cells - physiology ; Cadherins ; Cadherins - metabolism ; Carcinoma, Lewis Lung ; Carcinoma, Lewis Lung - drug therapy ; Carcinoma, Lewis Lung - genetics ; Cisplatin ; Cisplatin - pharmacology ; Colorectal Neoplasms ; Colorectal Neoplasms - drug therapy ; Colorectal Neoplasms - genetics ; Drug Resistance, Neoplasm ; Drug Resistance, Neoplasm - physiology ; Life Sciences ; Mammary Neoplasms, Animal ; Mammary Neoplasms, Animal - drug therapy ; Mammary Neoplasms, Animal - genetics ; Mice ; Mice, 129 Strain ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; Mice, Transgenic ; Paclitaxel ; Paclitaxel - pharmacology ; Receptor, Notch1 ; Receptor, Notch1 - genetics ; Receptor, Notch1 - physiology ; Vascular Biology ; Xenograft Model Antitumor Assays</subject><ispartof>Blood, 2013-07, Vol.122 (1), p.143-153</ispartof><rights>2013 American Society of Hematology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 by The American Society of Hematology 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</citedby><cites>FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23690447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04033541$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roodhart, Jeanine M.L.</creatorcontrib><creatorcontrib>He, Huanhuan</creatorcontrib><creatorcontrib>Daenen, Laura G.M.</creatorcontrib><creatorcontrib>Monvoisin, Arnaud</creatorcontrib><creatorcontrib>Barber, Chad L.</creatorcontrib><creatorcontrib>van Amersfoort, Miranda</creatorcontrib><creatorcontrib>Hofmann, Jennifer J.</creatorcontrib><creatorcontrib>Radtke, Freddy</creatorcontrib><creatorcontrib>Lane, Timothy F.</creatorcontrib><creatorcontrib>Voest, Emile E.</creatorcontrib><creatorcontrib>Iruela-Arispe, M. Luisa</creatorcontrib><title>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</title><title>Blood</title><addtitle>Blood</addtitle><description>Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy.
• Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors.</description><subject>Animals</subject><subject>Antigens, CD</subject><subject>Antigens, CD - metabolism</subject><subject>Antineoplastic Agents</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents, Phytogenic</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Bone Marrow Cells</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - physiology</subject><subject>Cadherins</subject><subject>Cadherins - metabolism</subject><subject>Carcinoma, Lewis Lung</subject><subject>Carcinoma, Lewis Lung - drug therapy</subject><subject>Carcinoma, Lewis Lung - genetics</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Colorectal Neoplasms</subject><subject>Colorectal Neoplasms - drug therapy</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Drug Resistance, Neoplasm</subject><subject>Drug Resistance, Neoplasm - physiology</subject><subject>Life Sciences</subject><subject>Mammary Neoplasms, Animal</subject><subject>Mammary Neoplasms, Animal - drug therapy</subject><subject>Mammary Neoplasms, Animal - genetics</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Nude</subject><subject>Mice, Transgenic</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Receptor, Notch1</subject><subject>Receptor, Notch1 - genetics</subject><subject>Receptor, Notch1 - physiology</subject><subject>Vascular Biology</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu1DAUtRAVHQp_gFCWsAjcazsvFkhVBS3SqGxgbTn2zYxREg92EsSOf-AP-RKcTimPBSvL555z7uMw9gThBWLNX7a99zbngDxHzGXRCFndYxsseJ0DcLjPNgBQ5rKp8JQ9jPETAErBiwfslIuyASmrDTPXfjJ7zALt5l5PFDM97pzP43w4-DC5hbLWj5QNOgT_5ce375ZCAm1mqO9j5sZscIZeJX1Pix4NZZPPzJ4GHyi6OK3QI3bS6T7S49v3jH18--bDxVW-fX_57uJ8m5s045TXnKCTRAJLjlWbQFParmhlI2ssKl12orSisLxGSxyhqKtKagRRtMIgtOKMvT76HuZ2IGtonILu1SG4NP1X5bVTf1dGt1c7vyhRATbAk8Hzo8H-H9nV-VatGEgQopC4YOI-u20W_OeZ4qQGF9ej6JH8HBWKppYrVySqPFJN8DEG6u68EdSapbrJUq1Zpr86ZplkT_9c5070K7zf-1I66uIoqGgcpYNbF8hMynr3_w4_ATeDskc</recordid><startdate>20130704</startdate><enddate>20130704</enddate><creator>Roodhart, Jeanine M.L.</creator><creator>He, Huanhuan</creator><creator>Daenen, Laura G.M.</creator><creator>Monvoisin, Arnaud</creator><creator>Barber, Chad L.</creator><creator>van Amersfoort, Miranda</creator><creator>Hofmann, Jennifer J.</creator><creator>Radtke, Freddy</creator><creator>Lane, Timothy F.</creator><creator>Voest, Emile E.</creator><creator>Iruela-Arispe, M. Luisa</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20130704</creationdate><title>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</title><author>Roodhart, Jeanine M.L. ; He, Huanhuan ; Daenen, Laura G.M. ; Monvoisin, Arnaud ; Barber, Chad L. ; van Amersfoort, Miranda ; Hofmann, Jennifer J. ; Radtke, Freddy ; Lane, Timothy F. ; Voest, Emile E. ; Iruela-Arispe, M. Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-82e0f4ee316217bc49c6df5b4948157a6f36d35d281de21058774a1035b3c10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antigens, CD</topic><topic>Antigens, CD - metabolism</topic><topic>Antineoplastic Agents</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents, Phytogenic</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Bone Marrow Cells</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - physiology</topic><topic>Cadherins</topic><topic>Cadherins - metabolism</topic><topic>Carcinoma, Lewis Lung</topic><topic>Carcinoma, Lewis Lung - drug therapy</topic><topic>Carcinoma, Lewis Lung - genetics</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Colorectal Neoplasms</topic><topic>Colorectal Neoplasms - drug therapy</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Drug Resistance, Neoplasm</topic><topic>Drug Resistance, Neoplasm - physiology</topic><topic>Life Sciences</topic><topic>Mammary Neoplasms, Animal</topic><topic>Mammary Neoplasms, Animal - drug therapy</topic><topic>Mammary Neoplasms, Animal - genetics</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Nude</topic><topic>Mice, Transgenic</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Receptor, Notch1</topic><topic>Receptor, Notch1 - genetics</topic><topic>Receptor, Notch1 - physiology</topic><topic>Vascular Biology</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roodhart, Jeanine M.L.</creatorcontrib><creatorcontrib>He, Huanhuan</creatorcontrib><creatorcontrib>Daenen, Laura G.M.</creatorcontrib><creatorcontrib>Monvoisin, Arnaud</creatorcontrib><creatorcontrib>Barber, Chad L.</creatorcontrib><creatorcontrib>van Amersfoort, Miranda</creatorcontrib><creatorcontrib>Hofmann, Jennifer J.</creatorcontrib><creatorcontrib>Radtke, Freddy</creatorcontrib><creatorcontrib>Lane, Timothy F.</creatorcontrib><creatorcontrib>Voest, Emile E.</creatorcontrib><creatorcontrib>Iruela-Arispe, M. Luisa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roodhart, Jeanine M.L.</au><au>He, Huanhuan</au><au>Daenen, Laura G.M.</au><au>Monvoisin, Arnaud</au><au>Barber, Chad L.</au><au>van Amersfoort, Miranda</au><au>Hofmann, Jennifer J.</au><au>Radtke, Freddy</au><au>Lane, Timothy F.</au><au>Voest, Emile E.</au><au>Iruela-Arispe, M. Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2013-07-04</date><risdate>2013</risdate><volume>122</volume><issue>1</issue><spage>143</spage><epage>153</epage><pages>143-153</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and contribution of a genetically traceable subpopulation of BMDCs (vascular endothelial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by a significant increase in angiogenesis. Expression profile analysis revealed a progressive change in the EYFP population with loss of endothelial markers and an increase in mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs were identified: Gr1+/CD11b+ and Tie2high/platelet endothelial cell adhesion moleculelow cells, both located in perivascular areas. A common signature of the EYFP population that exits the bone marrow is an increase in Notch. Inducible inactivation of Notch in the EYFP+ BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer therapy.
• Exposure to chemotherapy promotes the exit of specific subpopulations of BMDCs with angio-supportive activity.• Notch in BMDCs is required for the exit of these cells from the bone marrow and for chemotherapy-enhanced angiogenesis in tumors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23690447</pmid><doi>10.1182/blood-2012-11-459347</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2013-07, Vol.122 (1), p.143-153 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3701902 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Antigens, CD Antigens, CD - metabolism Antineoplastic Agents Antineoplastic Agents - pharmacology Antineoplastic Agents, Phytogenic Antineoplastic Agents, Phytogenic - pharmacology Bone Marrow Cells Bone Marrow Cells - cytology Bone Marrow Cells - physiology Cadherins Cadherins - metabolism Carcinoma, Lewis Lung Carcinoma, Lewis Lung - drug therapy Carcinoma, Lewis Lung - genetics Cisplatin Cisplatin - pharmacology Colorectal Neoplasms Colorectal Neoplasms - drug therapy Colorectal Neoplasms - genetics Drug Resistance, Neoplasm Drug Resistance, Neoplasm - physiology Life Sciences Mammary Neoplasms, Animal Mammary Neoplasms, Animal - drug therapy Mammary Neoplasms, Animal - genetics Mice Mice, 129 Strain Mice, Inbred BALB C Mice, Inbred C57BL Mice, Nude Mice, Transgenic Paclitaxel Paclitaxel - pharmacology Receptor, Notch1 Receptor, Notch1 - genetics Receptor, Notch1 - physiology Vascular Biology Xenograft Model Antitumor Assays |
title | Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notch1%20regulates%20angio-supportive%20bone%20marrow%E2%80%93derived%20cells%20in%20mice:%20relevance%20to%20chemoresistance&rft.jtitle=Blood&rft.au=Roodhart,%20Jeanine%20M.L.&rft.date=2013-07-04&rft.volume=122&rft.issue=1&rft.spage=143&rft.epage=153&rft.pages=143-153&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2012-11-459347&rft_dat=%3Cproquest_pubme%3E1398435413%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398435413&rft_id=info:pmid/23690447&rft_els_id=S0006497120572133&rfr_iscdi=true |