A Modified Sleeping Beauty Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice

Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2009-10, Vol.69 (20), p.8150-8156
Hauptverfasser: DUPUY, Adam J, ROGERS, Laura M, KIM, Jinsil, NANNAPANENI, Kishore, STARRY, Timothy K, PENTAO LIU, LARGAESPADA, David A, SCHEETZ, Todd E, JENKINS, Nancy A, COPELAND, Neal G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8156
container_issue 20
container_start_page 8150
container_title Cancer research (Chicago, Ill.)
container_volume 69
creator DUPUY, Adam J
ROGERS, Laura M
KIM, Jinsil
NANNAPANENI, Kishore
STARRY, Timothy K
PENTAO LIU
LARGAESPADA, David A
SCHEETZ, Todd E
JENKINS, Nancy A
COPELAND, Neal G
description Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty (SB) transposon system to model hematopoietic malignancies in mice. Here, we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBase(LsL), that allows the restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with an Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/chicken beta-actin promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of more than 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.
doi_str_mv 10.1158/0008-5472.CAN-09-1135
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3700628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19808965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-529e9be71e944cc9d86412503eb2d042380e1174dbba50418339fd71bfc5fe723</originalsourceid><addsrcrecordid>eNpVkU9LwzAchoMoOqcfQcnFY2f-rslFmEOd4PSwTY8hTX-dka4dTSfs25uyMfUUQp7nDbwvQleUDCiV6pYQohIpUjYYj14TohNKuTxCPSq5SlIh5DHqHZgzdB7CV7xKSuQpOqNaEaWHsoeqEZ7WuS885HhWAqx9tcT3YDftFs8bW4V1HeoKz7ahhRWef9oWj20VCbwIUWnrTocSW_zhc8DvtvEQ1brAk80qghF20ATsKzz1Di7QSWHLAJf7s48Wjw_z8SR5eXt6Ho9eEifZsE0k06AzSCloIZzTuRoKyiThkLGcCMYVAUpTkWeZlURQxbku8pRmhZMFpIz30d0ud73JVpA7qNrGlmbd-JVttqa23vx_qfynWdbfhqeEDJmKAXIX4Jo6hAaKg0uJ6QYwXbmmK9fEAQzRphsgetd_P_619o1H4GYP2OBsWcSOnQ8HjjGiuU41_wGSdI6U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Modified Sleeping Beauty Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB Electronic Journals Library</source><creator>DUPUY, Adam J ; ROGERS, Laura M ; KIM, Jinsil ; NANNAPANENI, Kishore ; STARRY, Timothy K ; PENTAO LIU ; LARGAESPADA, David A ; SCHEETZ, Todd E ; JENKINS, Nancy A ; COPELAND, Neal G</creator><creatorcontrib>DUPUY, Adam J ; ROGERS, Laura M ; KIM, Jinsil ; NANNAPANENI, Kishore ; STARRY, Timothy K ; PENTAO LIU ; LARGAESPADA, David A ; SCHEETZ, Todd E ; JENKINS, Nancy A ; COPELAND, Neal G</creatorcontrib><description>Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty (SB) transposon system to model hematopoietic malignancies in mice. Here, we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBase(LsL), that allows the restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with an Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/chicken beta-actin promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of more than 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-09-1135</identifier><identifier>PMID: 19808965</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Animals ; Antineoplastic agents ; Biological and medical sciences ; Carcinoma, Hepatocellular - genetics ; Carcinoma, Hepatocellular - pathology ; Disease Models, Animal ; DNA Transposable Elements - genetics ; Female ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humans ; Immunoenzyme Techniques ; Integrases - metabolism ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Liver Neoplasms, Experimental - genetics ; Liver Neoplasms, Experimental - pathology ; Lymphoma, B-Cell - genetics ; Lymphoma, B-Cell - pathology ; Male ; Medical sciences ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Transgenic ; Monte Carlo Method ; Mutagenesis, Insertional ; Mutation - genetics ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Pharmacology. Drug treatments ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Skin Neoplasms - genetics ; Skin Neoplasms - pathology ; Tumors</subject><ispartof>Cancer research (Chicago, Ill.), 2009-10, Vol.69 (20), p.8150-8156</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-529e9be71e944cc9d86412503eb2d042380e1174dbba50418339fd71bfc5fe723</citedby><cites>FETCH-LOGICAL-c526t-529e9be71e944cc9d86412503eb2d042380e1174dbba50418339fd71bfc5fe723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22093979$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19808965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DUPUY, Adam J</creatorcontrib><creatorcontrib>ROGERS, Laura M</creatorcontrib><creatorcontrib>KIM, Jinsil</creatorcontrib><creatorcontrib>NANNAPANENI, Kishore</creatorcontrib><creatorcontrib>STARRY, Timothy K</creatorcontrib><creatorcontrib>PENTAO LIU</creatorcontrib><creatorcontrib>LARGAESPADA, David A</creatorcontrib><creatorcontrib>SCHEETZ, Todd E</creatorcontrib><creatorcontrib>JENKINS, Nancy A</creatorcontrib><creatorcontrib>COPELAND, Neal G</creatorcontrib><title>A Modified Sleeping Beauty Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty (SB) transposon system to model hematopoietic malignancies in mice. Here, we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBase(LsL), that allows the restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with an Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/chicken beta-actin promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of more than 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.</description><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Disease Models, Animal</subject><subject>DNA Transposable Elements - genetics</subject><subject>Female</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Immunoenzyme Techniques</subject><subject>Integrases - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Liver Neoplasms, Experimental - genetics</subject><subject>Liver Neoplasms, Experimental - pathology</subject><subject>Lymphoma, B-Cell - genetics</subject><subject>Lymphoma, B-Cell - pathology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Monte Carlo Method</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation - genetics</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Pharmacology. Drug treatments</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Skin Neoplasms - genetics</subject><subject>Skin Neoplasms - pathology</subject><subject>Tumors</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9LwzAchoMoOqcfQcnFY2f-rslFmEOd4PSwTY8hTX-dka4dTSfs25uyMfUUQp7nDbwvQleUDCiV6pYQohIpUjYYj14TohNKuTxCPSq5SlIh5DHqHZgzdB7CV7xKSuQpOqNaEaWHsoeqEZ7WuS885HhWAqx9tcT3YDftFs8bW4V1HeoKz7ahhRWef9oWj20VCbwIUWnrTocSW_zhc8DvtvEQ1brAk80qghF20ATsKzz1Di7QSWHLAJf7s48Wjw_z8SR5eXt6Ho9eEifZsE0k06AzSCloIZzTuRoKyiThkLGcCMYVAUpTkWeZlURQxbku8pRmhZMFpIz30d0ud73JVpA7qNrGlmbd-JVttqa23vx_qfynWdbfhqeEDJmKAXIX4Jo6hAaKg0uJ6QYwXbmmK9fEAQzRphsgetd_P_619o1H4GYP2OBsWcSOnQ8HjjGiuU41_wGSdI6U</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>DUPUY, Adam J</creator><creator>ROGERS, Laura M</creator><creator>KIM, Jinsil</creator><creator>NANNAPANENI, Kishore</creator><creator>STARRY, Timothy K</creator><creator>PENTAO LIU</creator><creator>LARGAESPADA, David A</creator><creator>SCHEETZ, Todd E</creator><creator>JENKINS, Nancy A</creator><creator>COPELAND, Neal G</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091015</creationdate><title>A Modified Sleeping Beauty Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice</title><author>DUPUY, Adam J ; ROGERS, Laura M ; KIM, Jinsil ; NANNAPANENI, Kishore ; STARRY, Timothy K ; PENTAO LIU ; LARGAESPADA, David A ; SCHEETZ, Todd E ; JENKINS, Nancy A ; COPELAND, Neal G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-529e9be71e944cc9d86412503eb2d042380e1174dbba50418339fd71bfc5fe723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Disease Models, Animal</topic><topic>DNA Transposable Elements - genetics</topic><topic>Female</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Immunoenzyme Techniques</topic><topic>Integrases - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Liver Neoplasms, Experimental - genetics</topic><topic>Liver Neoplasms, Experimental - pathology</topic><topic>Lymphoma, B-Cell - genetics</topic><topic>Lymphoma, B-Cell - pathology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Monte Carlo Method</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation - genetics</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Pharmacology. Drug treatments</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Skin Neoplasms - genetics</topic><topic>Skin Neoplasms - pathology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUPUY, Adam J</creatorcontrib><creatorcontrib>ROGERS, Laura M</creatorcontrib><creatorcontrib>KIM, Jinsil</creatorcontrib><creatorcontrib>NANNAPANENI, Kishore</creatorcontrib><creatorcontrib>STARRY, Timothy K</creatorcontrib><creatorcontrib>PENTAO LIU</creatorcontrib><creatorcontrib>LARGAESPADA, David A</creatorcontrib><creatorcontrib>SCHEETZ, Todd E</creatorcontrib><creatorcontrib>JENKINS, Nancy A</creatorcontrib><creatorcontrib>COPELAND, Neal G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUPUY, Adam J</au><au>ROGERS, Laura M</au><au>KIM, Jinsil</au><au>NANNAPANENI, Kishore</au><au>STARRY, Timothy K</au><au>PENTAO LIU</au><au>LARGAESPADA, David A</au><au>SCHEETZ, Todd E</au><au>JENKINS, Nancy A</au><au>COPELAND, Neal G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified Sleeping Beauty Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2009-10-15</date><risdate>2009</risdate><volume>69</volume><issue>20</issue><spage>8150</spage><epage>8156</epage><pages>8150-8156</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>Recent advances in cancer therapeutics stress the need for a better understanding of the molecular mechanisms driving tumor formation. This can be accomplished by obtaining a more complete description of the genes that contribute to cancer. We previously described an approach using the Sleeping Beauty (SB) transposon system to model hematopoietic malignancies in mice. Here, we describe modifications of the SB system that provide additional flexibility in generating mouse models of cancer. First, we describe a Cre-inducible SBase allele, RosaSBase(LsL), that allows the restriction of transposon mutagenesis to a specific tissue of interest. This allele was used to generate a model of germinal center B-cell lymphoma by activating SBase expression with an Aid-Cre allele. In a second approach, a novel transposon was generated, T2/Onc3, in which the CMV enhancer/chicken beta-actin promoter drives oncogene expression. When combined with ubiquitous SBase expression, the T2/Onc3 transposon produced nearly 200 independent tumors of more than 20 different types in a cohort of 62 mice. Analysis of transposon insertion sites identified novel candidate genes, including Zmiz1 and Rian, involved in squamous cell carcinoma and hepatocellular carcinoma, respectively. These novel alleles provide additional tools for the SB system and provide some insight into how this mutagenesis system can be manipulated to model cancer in mice.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>19808965</pmid><doi>10.1158/0008-5472.CAN-09-1135</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2009-10, Vol.69 (20), p.8150-8156
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3700628
source MEDLINE; American Association for Cancer Research; EZB Electronic Journals Library
subjects Animals
Antineoplastic agents
Biological and medical sciences
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - pathology
Disease Models, Animal
DNA Transposable Elements - genetics
Female
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humans
Immunoenzyme Techniques
Integrases - metabolism
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Liver Neoplasms, Experimental - genetics
Liver Neoplasms, Experimental - pathology
Lymphoma, B-Cell - genetics
Lymphoma, B-Cell - pathology
Male
Medical sciences
Mice
Mice, Inbred C3H
Mice, Inbred C57BL
Mice, Transgenic
Monte Carlo Method
Mutagenesis, Insertional
Mutation - genetics
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Pharmacology. Drug treatments
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Messenger - metabolism
Skin Neoplasms - genetics
Skin Neoplasms - pathology
Tumors
title A Modified Sleeping Beauty Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20Sleeping%20Beauty%20Transposon%20System%20That%20Can%20Be%20Used%20to%20Model%20a%20Wide%20Variety%20of%20Human%20Cancers%20in%20Mice&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=DUPUY,%20Adam%20J&rft.date=2009-10-15&rft.volume=69&rft.issue=20&rft.spage=8150&rft.epage=8156&rft.pages=8150-8156&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.CAN-09-1135&rft_dat=%3Cpubmed_cross%3E19808965%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19808965&rfr_iscdi=true