Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface
Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cel...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2013-07, Vol.105 (1), p.21-28 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Biophysical journal |
container_volume | 105 |
creator | Morse, Michael Huang, Athena Li, Guanglai Maxey, Martin R. Tang, Jay X. |
description | Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. |
doi_str_mv | 10.1016/j.bpj.2013.05.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3699731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349513005833</els_id><sourcerecordid>3020619661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</originalsourceid><addsrcrecordid>eNqFkc1u1DAURiMEokPhAdhAJDbdJL22YzsREtJQ8TNSEYuhYmnZzs3UURJP7aSob49HUypgARt7cc_36dony14SKAkQcd6XZt-XFAgrgZdAxaNsRXhFC4BaPM5WACAKVjX8JHsWYw9AKAfyNDuhrKaMUlhlmy9-QLsMOuTrNvqwn52f8u2MGGL-XtsZg9NDvv3hxtFNu1zP-XyN-dqF8-86DfPNlM5OW3yePen0EPHF_X2aXX388O3ic3H59dPmYn1ZWM7EXBDDW9HZmnGKpmqlYLZjrWxF20nDpKbMMKSmJhXXaCiTxIKx2kjaYCdFw06zd8fe_WJGbC1Oc9CD2gc36nCnvHbqz8nkrtXO3yommkYykgrO7guCv1kwzmp00eIw6An9EhXhwBmrQfL_o6ypK0p5fWh98xfa-yVM6ScUqSC5kVUFiSJHygYfY8DuYW8C6uBU9So5VQenCrhKuZR59fuDHxK_JCbg9RHotFd6F1xUV9vUwJNwwghUiXh7JDCJuXUYVLQOJ4utC2hn1Xr3jwV-Aq_CuqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400267440</pqid></control><display><type>article</type><title>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Morse, Michael ; Huang, Athena ; Li, Guanglai ; Maxey, Martin R. ; Tang, Jay X.</creator><creatorcontrib>Morse, Michael ; Huang, Athena ; Li, Guanglai ; Maxey, Martin R. ; Tang, Jay X.</creatorcontrib><description>Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2013.05.026</identifier><identifier>PMID: 23823220</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adsorption ; Air ; bacteria ; bacterial motility ; Caulobacter crescentus ; Caulobacter crescentus - cytology ; Cell Biophysics ; Cells ; culture media ; E coli ; Escherichia coli ; Fluid mechanics ; Microscopy ; Molecules ; Movement ; nonionic surfactants ; soil ; Surface Properties ; Surfactants ; swimming ; viscosity ; Water</subject><ispartof>Biophysical journal, 2013-07, Vol.105 (1), p.21-28</ispartof><rights>2013 Biophysical Society</rights><rights>Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 2, 2013</rights><rights>2013 by the Biophysical Society. 2013 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</citedby><cites>FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699731/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2013.05.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23823220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morse, Michael</creatorcontrib><creatorcontrib>Huang, Athena</creatorcontrib><creatorcontrib>Li, Guanglai</creatorcontrib><creatorcontrib>Maxey, Martin R.</creatorcontrib><creatorcontrib>Tang, Jay X.</creatorcontrib><title>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.</description><subject>Adsorption</subject><subject>Air</subject><subject>bacteria</subject><subject>bacterial motility</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - cytology</subject><subject>Cell Biophysics</subject><subject>Cells</subject><subject>culture media</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fluid mechanics</subject><subject>Microscopy</subject><subject>Molecules</subject><subject>Movement</subject><subject>nonionic surfactants</subject><subject>soil</subject><subject>Surface Properties</subject><subject>Surfactants</subject><subject>swimming</subject><subject>viscosity</subject><subject>Water</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURiMEokPhAdhAJDbdJL22YzsREtJQ8TNSEYuhYmnZzs3UURJP7aSob49HUypgARt7cc_36dony14SKAkQcd6XZt-XFAgrgZdAxaNsRXhFC4BaPM5WACAKVjX8JHsWYw9AKAfyNDuhrKaMUlhlmy9-QLsMOuTrNvqwn52f8u2MGGL-XtsZg9NDvv3hxtFNu1zP-XyN-dqF8-86DfPNlM5OW3yePen0EPHF_X2aXX388O3ic3H59dPmYn1ZWM7EXBDDW9HZmnGKpmqlYLZjrWxF20nDpKbMMKSmJhXXaCiTxIKx2kjaYCdFw06zd8fe_WJGbC1Oc9CD2gc36nCnvHbqz8nkrtXO3yommkYykgrO7guCv1kwzmp00eIw6An9EhXhwBmrQfL_o6ypK0p5fWh98xfa-yVM6ScUqSC5kVUFiSJHygYfY8DuYW8C6uBU9So5VQenCrhKuZR59fuDHxK_JCbg9RHotFd6F1xUV9vUwJNwwghUiXh7JDCJuXUYVLQOJ4utC2hn1Xr3jwV-Aq_CuqA</recordid><startdate>20130702</startdate><enddate>20130702</enddate><creator>Morse, Michael</creator><creator>Huang, Athena</creator><creator>Li, Guanglai</creator><creator>Maxey, Martin R.</creator><creator>Tang, Jay X.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20130702</creationdate><title>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</title><author>Morse, Michael ; Huang, Athena ; Li, Guanglai ; Maxey, Martin R. ; Tang, Jay X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Air</topic><topic>bacteria</topic><topic>bacterial motility</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - cytology</topic><topic>Cell Biophysics</topic><topic>Cells</topic><topic>culture media</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fluid mechanics</topic><topic>Microscopy</topic><topic>Molecules</topic><topic>Movement</topic><topic>nonionic surfactants</topic><topic>soil</topic><topic>Surface Properties</topic><topic>Surfactants</topic><topic>swimming</topic><topic>viscosity</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morse, Michael</creatorcontrib><creatorcontrib>Huang, Athena</creatorcontrib><creatorcontrib>Li, Guanglai</creatorcontrib><creatorcontrib>Maxey, Martin R.</creatorcontrib><creatorcontrib>Tang, Jay X.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morse, Michael</au><au>Huang, Athena</au><au>Li, Guanglai</au><au>Maxey, Martin R.</au><au>Tang, Jay X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2013-07-02</date><risdate>2013</risdate><volume>105</volume><issue>1</issue><spage>21</spage><epage>28</epage><pages>21-28</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23823220</pmid><doi>10.1016/j.bpj.2013.05.026</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2013-07, Vol.105 (1), p.21-28 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3699731 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adsorption Air bacteria bacterial motility Caulobacter crescentus Caulobacter crescentus - cytology Cell Biophysics Cells culture media E coli Escherichia coli Fluid mechanics Microscopy Molecules Movement nonionic surfactants soil Surface Properties Surfactants swimming viscosity Water |
title | Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Adsorption%20Steers%20Bacterial%20Swimming%20at%20the%20Air/Water%20Interface&rft.jtitle=Biophysical%20journal&rft.au=Morse,%20Michael&rft.date=2013-07-02&rft.volume=105&rft.issue=1&rft.spage=21&rft.epage=28&rft.pages=21-28&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2013.05.026&rft_dat=%3Cproquest_pubme%3E3020619661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400267440&rft_id=info:pmid/23823220&rft_els_id=S0006349513005833&rfr_iscdi=true |