Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface

Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2013-07, Vol.105 (1), p.21-28
Hauptverfasser: Morse, Michael, Huang, Athena, Li, Guanglai, Maxey, Martin R., Tang, Jay X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 21
container_title Biophysical journal
container_volume 105
creator Morse, Michael
Huang, Athena
Li, Guanglai
Maxey, Martin R.
Tang, Jay X.
description Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.
doi_str_mv 10.1016/j.bpj.2013.05.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3699731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349513005833</els_id><sourcerecordid>3020619661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</originalsourceid><addsrcrecordid>eNqFkc1u1DAURiMEokPhAdhAJDbdJL22YzsREtJQ8TNSEYuhYmnZzs3UURJP7aSob49HUypgARt7cc_36dony14SKAkQcd6XZt-XFAgrgZdAxaNsRXhFC4BaPM5WACAKVjX8JHsWYw9AKAfyNDuhrKaMUlhlmy9-QLsMOuTrNvqwn52f8u2MGGL-XtsZg9NDvv3hxtFNu1zP-XyN-dqF8-86DfPNlM5OW3yePen0EPHF_X2aXX388O3ic3H59dPmYn1ZWM7EXBDDW9HZmnGKpmqlYLZjrWxF20nDpKbMMKSmJhXXaCiTxIKx2kjaYCdFw06zd8fe_WJGbC1Oc9CD2gc36nCnvHbqz8nkrtXO3yommkYykgrO7guCv1kwzmp00eIw6An9EhXhwBmrQfL_o6ypK0p5fWh98xfa-yVM6ScUqSC5kVUFiSJHygYfY8DuYW8C6uBU9So5VQenCrhKuZR59fuDHxK_JCbg9RHotFd6F1xUV9vUwJNwwghUiXh7JDCJuXUYVLQOJ4utC2hn1Xr3jwV-Aq_CuqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400267440</pqid></control><display><type>article</type><title>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Morse, Michael ; Huang, Athena ; Li, Guanglai ; Maxey, Martin R. ; Tang, Jay X.</creator><creatorcontrib>Morse, Michael ; Huang, Athena ; Li, Guanglai ; Maxey, Martin R. ; Tang, Jay X.</creatorcontrib><description>Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2013.05.026</identifier><identifier>PMID: 23823220</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adsorption ; Air ; bacteria ; bacterial motility ; Caulobacter crescentus ; Caulobacter crescentus - cytology ; Cell Biophysics ; Cells ; culture media ; E coli ; Escherichia coli ; Fluid mechanics ; Microscopy ; Molecules ; Movement ; nonionic surfactants ; soil ; Surface Properties ; Surfactants ; swimming ; viscosity ; Water</subject><ispartof>Biophysical journal, 2013-07, Vol.105 (1), p.21-28</ispartof><rights>2013 Biophysical Society</rights><rights>Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 2, 2013</rights><rights>2013 by the Biophysical Society. 2013 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</citedby><cites>FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699731/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2013.05.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23823220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morse, Michael</creatorcontrib><creatorcontrib>Huang, Athena</creatorcontrib><creatorcontrib>Li, Guanglai</creatorcontrib><creatorcontrib>Maxey, Martin R.</creatorcontrib><creatorcontrib>Tang, Jay X.</creatorcontrib><title>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.</description><subject>Adsorption</subject><subject>Air</subject><subject>bacteria</subject><subject>bacterial motility</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - cytology</subject><subject>Cell Biophysics</subject><subject>Cells</subject><subject>culture media</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fluid mechanics</subject><subject>Microscopy</subject><subject>Molecules</subject><subject>Movement</subject><subject>nonionic surfactants</subject><subject>soil</subject><subject>Surface Properties</subject><subject>Surfactants</subject><subject>swimming</subject><subject>viscosity</subject><subject>Water</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURiMEokPhAdhAJDbdJL22YzsREtJQ8TNSEYuhYmnZzs3UURJP7aSob49HUypgARt7cc_36dony14SKAkQcd6XZt-XFAgrgZdAxaNsRXhFC4BaPM5WACAKVjX8JHsWYw9AKAfyNDuhrKaMUlhlmy9-QLsMOuTrNvqwn52f8u2MGGL-XtsZg9NDvv3hxtFNu1zP-XyN-dqF8-86DfPNlM5OW3yePen0EPHF_X2aXX388O3ic3H59dPmYn1ZWM7EXBDDW9HZmnGKpmqlYLZjrWxF20nDpKbMMKSmJhXXaCiTxIKx2kjaYCdFw06zd8fe_WJGbC1Oc9CD2gc36nCnvHbqz8nkrtXO3yommkYykgrO7guCv1kwzmp00eIw6An9EhXhwBmrQfL_o6ypK0p5fWh98xfa-yVM6ScUqSC5kVUFiSJHygYfY8DuYW8C6uBU9So5VQenCrhKuZR59fuDHxK_JCbg9RHotFd6F1xUV9vUwJNwwghUiXh7JDCJuXUYVLQOJ4utC2hn1Xr3jwV-Aq_CuqA</recordid><startdate>20130702</startdate><enddate>20130702</enddate><creator>Morse, Michael</creator><creator>Huang, Athena</creator><creator>Li, Guanglai</creator><creator>Maxey, Martin R.</creator><creator>Tang, Jay X.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20130702</creationdate><title>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</title><author>Morse, Michael ; Huang, Athena ; Li, Guanglai ; Maxey, Martin R. ; Tang, Jay X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-1b5d6fc8352eb4d763cf3d7d6df7b37a23b3e2b8145aeb2371c0bcab729ef7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Air</topic><topic>bacteria</topic><topic>bacterial motility</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - cytology</topic><topic>Cell Biophysics</topic><topic>Cells</topic><topic>culture media</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fluid mechanics</topic><topic>Microscopy</topic><topic>Molecules</topic><topic>Movement</topic><topic>nonionic surfactants</topic><topic>soil</topic><topic>Surface Properties</topic><topic>Surfactants</topic><topic>swimming</topic><topic>viscosity</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morse, Michael</creatorcontrib><creatorcontrib>Huang, Athena</creatorcontrib><creatorcontrib>Li, Guanglai</creatorcontrib><creatorcontrib>Maxey, Martin R.</creatorcontrib><creatorcontrib>Tang, Jay X.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morse, Michael</au><au>Huang, Athena</au><au>Li, Guanglai</au><au>Maxey, Martin R.</au><au>Tang, Jay X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2013-07-02</date><risdate>2013</risdate><volume>105</volume><issue>1</issue><spage>21</spage><epage>28</epage><pages>21-28</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23823220</pmid><doi>10.1016/j.bpj.2013.05.026</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2013-07, Vol.105 (1), p.21-28
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3699731
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adsorption
Air
bacteria
bacterial motility
Caulobacter crescentus
Caulobacter crescentus - cytology
Cell Biophysics
Cells
culture media
E coli
Escherichia coli
Fluid mechanics
Microscopy
Molecules
Movement
nonionic surfactants
soil
Surface Properties
Surfactants
swimming
viscosity
Water
title Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Adsorption%20Steers%20Bacterial%20Swimming%20at%20the%20Air/Water%20Interface&rft.jtitle=Biophysical%20journal&rft.au=Morse,%20Michael&rft.date=2013-07-02&rft.volume=105&rft.issue=1&rft.spage=21&rft.epage=28&rft.pages=21-28&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2013.05.026&rft_dat=%3Cproquest_pubme%3E3020619661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400267440&rft_id=info:pmid/23823220&rft_els_id=S0006349513005833&rfr_iscdi=true