Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function

Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to cis -regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular medicine (Berlin, Germany) Germany), 2013-07, Vol.91 (7), p.871-881
Hauptverfasser: Casarrubea, D., Viatte, L., Hallas, T., Vasanthakumar, A., Eisenstein, R. S., Schümann, K., Hentze, M. W., Galy, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue 7
container_start_page 871
container_title Journal of molecular medicine (Berlin, Germany)
container_volume 91
creator Casarrubea, D.
Viatte, L.
Hallas, T.
Vasanthakumar, A.
Eisenstein, R. S.
Schümann, K.
Hentze, M. W.
Galy, B.
description Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to cis -regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the Rosa26 locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.
doi_str_mv 10.1007/s00109-013-1008-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1373437366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</originalsourceid><addsrcrecordid>eNp1kdtqFTEUhoModlt9AG8k4E29GE0mmSRzI5TioVBQRK9DTrN3ykyyTWZa9iP41q7N1FIFL3JY-b_1ryQLoZeUvKWEyHeVEEr6hlDWQKya9hHaUM7ahnJOHqMN6bloWknFCXpW6zXQsuv5U3TSMt51kpIN-nVuUy6TGbHN_oBjyQn7WOcS7TJHCEzyOJTDvCt5n2OoseIIpzjlmzDiKS81wOxhfxvnHWh-cdGOAW8NcHlYLUvYLqOZczngfclzAOns8tvXNw3Fw5LcsdJz9GQwYw0v7tZT9OPjh-8Xn5urL58uL86vGsclmRvFB-baoAx1xlmmbOeJkoMQlkjhSE-DJ160XNnQE8m8dZ4K2TnGrZdWeHaK3q---8VOwbuQ5mJGvS9xMuWgs4n6byXFnd7mG81E3wmlwODszqDkn0uos55idWEcTQrwHZoyyTgMIQB9_Q96nZeS4HlHqqVSUsWBoivlSq61hOH-MpToY6P12mgNjT7GSreQ8-rhK-4z_nQWgHYFKkhpG8qD0v91_Q1XlLY-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372177184</pqid></control><display><type>article</type><title>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Casarrubea, D. ; Viatte, L. ; Hallas, T. ; Vasanthakumar, A. ; Eisenstein, R. S. ; Schümann, K. ; Hentze, M. W. ; Galy, B.</creator><creatorcontrib>Casarrubea, D. ; Viatte, L. ; Hallas, T. ; Vasanthakumar, A. ; Eisenstein, R. S. ; Schümann, K. ; Hentze, M. W. ; Galy, B.</creatorcontrib><description>Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to cis -regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the Rosa26 locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-013-1008-2</identifier><identifier>PMID: 23455710</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anemia, Macrocytic - metabolism ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Duodenum - metabolism ; Erythropoiesis - physiology ; Female ; Human Genetics ; Internal Medicine ; Iron - metabolism ; Iron Regulatory Protein 1 - genetics ; Iron Regulatory Protein 1 - metabolism ; Iron-Regulatory Proteins - metabolism ; Liver - metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Medicine ; Original ; Original Article ; Spleen - metabolism</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2013-07, Vol.91 (7), p.871-881</ispartof><rights>The Author(s) 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</citedby><cites>FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00109-013-1008-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00109-013-1008-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23455710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casarrubea, D.</creatorcontrib><creatorcontrib>Viatte, L.</creatorcontrib><creatorcontrib>Hallas, T.</creatorcontrib><creatorcontrib>Vasanthakumar, A.</creatorcontrib><creatorcontrib>Eisenstein, R. S.</creatorcontrib><creatorcontrib>Schümann, K.</creatorcontrib><creatorcontrib>Hentze, M. W.</creatorcontrib><creatorcontrib>Galy, B.</creatorcontrib><title>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><addtitle>J Mol Med (Berl)</addtitle><description>Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to cis -regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the Rosa26 locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.</description><subject>Anemia, Macrocytic - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Duodenum - metabolism</subject><subject>Erythropoiesis - physiology</subject><subject>Female</subject><subject>Human Genetics</subject><subject>Internal Medicine</subject><subject>Iron - metabolism</subject><subject>Iron Regulatory Protein 1 - genetics</subject><subject>Iron Regulatory Protein 1 - metabolism</subject><subject>Iron-Regulatory Proteins - metabolism</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Molecular Medicine</subject><subject>Original</subject><subject>Original Article</subject><subject>Spleen - metabolism</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kdtqFTEUhoModlt9AG8k4E29GE0mmSRzI5TioVBQRK9DTrN3ykyyTWZa9iP41q7N1FIFL3JY-b_1ryQLoZeUvKWEyHeVEEr6hlDWQKya9hHaUM7ahnJOHqMN6bloWknFCXpW6zXQsuv5U3TSMt51kpIN-nVuUy6TGbHN_oBjyQn7WOcS7TJHCEzyOJTDvCt5n2OoseIIpzjlmzDiKS81wOxhfxvnHWh-cdGOAW8NcHlYLUvYLqOZczngfclzAOns8tvXNw3Fw5LcsdJz9GQwYw0v7tZT9OPjh-8Xn5urL58uL86vGsclmRvFB-baoAx1xlmmbOeJkoMQlkjhSE-DJ160XNnQE8m8dZ4K2TnGrZdWeHaK3q---8VOwbuQ5mJGvS9xMuWgs4n6byXFnd7mG81E3wmlwODszqDkn0uos55idWEcTQrwHZoyyTgMIQB9_Q96nZeS4HlHqqVSUsWBoivlSq61hOH-MpToY6P12mgNjT7GSreQ8-rhK-4z_nQWgHYFKkhpG8qD0v91_Q1XlLY-</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Casarrubea, D.</creator><creator>Viatte, L.</creator><creator>Hallas, T.</creator><creator>Vasanthakumar, A.</creator><creator>Eisenstein, R. S.</creator><creator>Schümann, K.</creator><creator>Hentze, M. W.</creator><creator>Galy, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</title><author>Casarrubea, D. ; Viatte, L. ; Hallas, T. ; Vasanthakumar, A. ; Eisenstein, R. S. ; Schümann, K. ; Hentze, M. W. ; Galy, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anemia, Macrocytic - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Duodenum - metabolism</topic><topic>Erythropoiesis - physiology</topic><topic>Female</topic><topic>Human Genetics</topic><topic>Internal Medicine</topic><topic>Iron - metabolism</topic><topic>Iron Regulatory Protein 1 - genetics</topic><topic>Iron Regulatory Protein 1 - metabolism</topic><topic>Iron-Regulatory Proteins - metabolism</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Molecular Medicine</topic><topic>Original</topic><topic>Original Article</topic><topic>Spleen - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casarrubea, D.</creatorcontrib><creatorcontrib>Viatte, L.</creatorcontrib><creatorcontrib>Hallas, T.</creatorcontrib><creatorcontrib>Vasanthakumar, A.</creatorcontrib><creatorcontrib>Eisenstein, R. S.</creatorcontrib><creatorcontrib>Schümann, K.</creatorcontrib><creatorcontrib>Hentze, M. W.</creatorcontrib><creatorcontrib>Galy, B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casarrubea, D.</au><au>Viatte, L.</au><au>Hallas, T.</au><au>Vasanthakumar, A.</au><au>Eisenstein, R. S.</au><au>Schümann, K.</au><au>Hentze, M. W.</au><au>Galy, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><addtitle>J Mol Med (Berl)</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>91</volume><issue>7</issue><spage>871</spage><epage>881</epage><pages>871-881</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to cis -regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the Rosa26 locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23455710</pmid><doi>10.1007/s00109-013-1008-2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0946-2716
ispartof Journal of molecular medicine (Berlin, Germany), 2013-07, Vol.91 (7), p.871-881
issn 0946-2716
1432-1440
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695688
source MEDLINE; SpringerLink Journals
subjects Anemia, Macrocytic - metabolism
Animals
Biomedical and Life Sciences
Biomedicine
Duodenum - metabolism
Erythropoiesis - physiology
Female
Human Genetics
Internal Medicine
Iron - metabolism
Iron Regulatory Protein 1 - genetics
Iron Regulatory Protein 1 - metabolism
Iron-Regulatory Proteins - metabolism
Liver - metabolism
Male
Mice
Mice, Transgenic
Molecular Medicine
Original
Original Article
Spleen - metabolism
title Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormal%20body%20iron%20distribution%20and%20erythropoiesis%20in%20a%20novel%20mouse%20model%20with%20inducible%20gain%20of%20iron%20regulatory%20protein%20(IRP)-1%20function&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=Casarrubea,%20D.&rft.date=2013-07-01&rft.volume=91&rft.issue=7&rft.spage=871&rft.epage=881&rft.pages=871-881&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-013-1008-2&rft_dat=%3Cproquest_pubme%3E1373437366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372177184&rft_id=info:pmid/23455710&rfr_iscdi=true