Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function
Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to cis -regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded v...
Gespeichert in:
Veröffentlicht in: | Journal of molecular medicine (Berlin, Germany) Germany), 2013-07, Vol.91 (7), p.871-881 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 881 |
---|---|
container_issue | 7 |
container_start_page | 871 |
container_title | Journal of molecular medicine (Berlin, Germany) |
container_volume | 91 |
creator | Casarrubea, D. Viatte, L. Hallas, T. Vasanthakumar, A. Eisenstein, R. S. Schümann, K. Hentze, M. W. Galy, B. |
description | Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to
cis
-regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the
Rosa26
locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia. |
doi_str_mv | 10.1007/s00109-013-1008-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1373437366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</originalsourceid><addsrcrecordid>eNp1kdtqFTEUhoModlt9AG8k4E29GE0mmSRzI5TioVBQRK9DTrN3ykyyTWZa9iP41q7N1FIFL3JY-b_1ryQLoZeUvKWEyHeVEEr6hlDWQKya9hHaUM7ahnJOHqMN6bloWknFCXpW6zXQsuv5U3TSMt51kpIN-nVuUy6TGbHN_oBjyQn7WOcS7TJHCEzyOJTDvCt5n2OoseIIpzjlmzDiKS81wOxhfxvnHWh-cdGOAW8NcHlYLUvYLqOZczngfclzAOns8tvXNw3Fw5LcsdJz9GQwYw0v7tZT9OPjh-8Xn5urL58uL86vGsclmRvFB-baoAx1xlmmbOeJkoMQlkjhSE-DJ160XNnQE8m8dZ4K2TnGrZdWeHaK3q---8VOwbuQ5mJGvS9xMuWgs4n6byXFnd7mG81E3wmlwODszqDkn0uos55idWEcTQrwHZoyyTgMIQB9_Q96nZeS4HlHqqVSUsWBoivlSq61hOH-MpToY6P12mgNjT7GSreQ8-rhK-4z_nQWgHYFKkhpG8qD0v91_Q1XlLY-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372177184</pqid></control><display><type>article</type><title>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Casarrubea, D. ; Viatte, L. ; Hallas, T. ; Vasanthakumar, A. ; Eisenstein, R. S. ; Schümann, K. ; Hentze, M. W. ; Galy, B.</creator><creatorcontrib>Casarrubea, D. ; Viatte, L. ; Hallas, T. ; Vasanthakumar, A. ; Eisenstein, R. S. ; Schümann, K. ; Hentze, M. W. ; Galy, B.</creatorcontrib><description>Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to
cis
-regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the
Rosa26
locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-013-1008-2</identifier><identifier>PMID: 23455710</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anemia, Macrocytic - metabolism ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Duodenum - metabolism ; Erythropoiesis - physiology ; Female ; Human Genetics ; Internal Medicine ; Iron - metabolism ; Iron Regulatory Protein 1 - genetics ; Iron Regulatory Protein 1 - metabolism ; Iron-Regulatory Proteins - metabolism ; Liver - metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Medicine ; Original ; Original Article ; Spleen - metabolism</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2013-07, Vol.91 (7), p.871-881</ispartof><rights>The Author(s) 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</citedby><cites>FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00109-013-1008-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00109-013-1008-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23455710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casarrubea, D.</creatorcontrib><creatorcontrib>Viatte, L.</creatorcontrib><creatorcontrib>Hallas, T.</creatorcontrib><creatorcontrib>Vasanthakumar, A.</creatorcontrib><creatorcontrib>Eisenstein, R. S.</creatorcontrib><creatorcontrib>Schümann, K.</creatorcontrib><creatorcontrib>Hentze, M. W.</creatorcontrib><creatorcontrib>Galy, B.</creatorcontrib><title>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><addtitle>J Mol Med (Berl)</addtitle><description>Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to
cis
-regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the
Rosa26
locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.</description><subject>Anemia, Macrocytic - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Duodenum - metabolism</subject><subject>Erythropoiesis - physiology</subject><subject>Female</subject><subject>Human Genetics</subject><subject>Internal Medicine</subject><subject>Iron - metabolism</subject><subject>Iron Regulatory Protein 1 - genetics</subject><subject>Iron Regulatory Protein 1 - metabolism</subject><subject>Iron-Regulatory Proteins - metabolism</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Molecular Medicine</subject><subject>Original</subject><subject>Original Article</subject><subject>Spleen - metabolism</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kdtqFTEUhoModlt9AG8k4E29GE0mmSRzI5TioVBQRK9DTrN3ykyyTWZa9iP41q7N1FIFL3JY-b_1ryQLoZeUvKWEyHeVEEr6hlDWQKya9hHaUM7ahnJOHqMN6bloWknFCXpW6zXQsuv5U3TSMt51kpIN-nVuUy6TGbHN_oBjyQn7WOcS7TJHCEzyOJTDvCt5n2OoseIIpzjlmzDiKS81wOxhfxvnHWh-cdGOAW8NcHlYLUvYLqOZczngfclzAOns8tvXNw3Fw5LcsdJz9GQwYw0v7tZT9OPjh-8Xn5urL58uL86vGsclmRvFB-baoAx1xlmmbOeJkoMQlkjhSE-DJ160XNnQE8m8dZ4K2TnGrZdWeHaK3q---8VOwbuQ5mJGvS9xMuWgs4n6byXFnd7mG81E3wmlwODszqDkn0uos55idWEcTQrwHZoyyTgMIQB9_Q96nZeS4HlHqqVSUsWBoivlSq61hOH-MpToY6P12mgNjT7GSreQ8-rhK-4z_nQWgHYFKkhpG8qD0v91_Q1XlLY-</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Casarrubea, D.</creator><creator>Viatte, L.</creator><creator>Hallas, T.</creator><creator>Vasanthakumar, A.</creator><creator>Eisenstein, R. S.</creator><creator>Schümann, K.</creator><creator>Hentze, M. W.</creator><creator>Galy, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130701</creationdate><title>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</title><author>Casarrubea, D. ; Viatte, L. ; Hallas, T. ; Vasanthakumar, A. ; Eisenstein, R. S. ; Schümann, K. ; Hentze, M. W. ; Galy, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-84f3c2e8a1cacb38b5d087f66b076c091ed0d6248be9073dbcd1675c34bd7b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anemia, Macrocytic - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Duodenum - metabolism</topic><topic>Erythropoiesis - physiology</topic><topic>Female</topic><topic>Human Genetics</topic><topic>Internal Medicine</topic><topic>Iron - metabolism</topic><topic>Iron Regulatory Protein 1 - genetics</topic><topic>Iron Regulatory Protein 1 - metabolism</topic><topic>Iron-Regulatory Proteins - metabolism</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Molecular Medicine</topic><topic>Original</topic><topic>Original Article</topic><topic>Spleen - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casarrubea, D.</creatorcontrib><creatorcontrib>Viatte, L.</creatorcontrib><creatorcontrib>Hallas, T.</creatorcontrib><creatorcontrib>Vasanthakumar, A.</creatorcontrib><creatorcontrib>Eisenstein, R. S.</creatorcontrib><creatorcontrib>Schümann, K.</creatorcontrib><creatorcontrib>Hentze, M. W.</creatorcontrib><creatorcontrib>Galy, B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casarrubea, D.</au><au>Viatte, L.</au><au>Hallas, T.</au><au>Vasanthakumar, A.</au><au>Eisenstein, R. S.</au><au>Schümann, K.</au><au>Hentze, M. W.</au><au>Galy, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><addtitle>J Mol Med (Berl)</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>91</volume><issue>7</issue><spage>871</spage><epage>881</epage><pages>871-881</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>Disorders of iron metabolism account for some of the most common human diseases. Cellular iron homeostasis is maintained by iron regulatory proteins (IRP)-1 and 2 through their binding to
cis
-regulatory iron-responsive elements (IREs) in target mRNAs. Mouse models with IRP deficiency have yielded valuable insights into iron biology, but the physiological consequences of gain of IRP function in mammalian organisms have remained unexplored. Here, we report the generation of a mouse line allowing conditional expression of a constitutively active IRP1 mutant (IRP1*) using Cre/Lox technology. Systemic activation of the IRP1* transgene from the
Rosa26
locus yields viable animals with gain of IRE-binding activity in all the organs analyzed. IRP1* activation alters the expression of IRP target genes and is accompanied by iron loading in the same organs. Furthermore, mice display macrocytic erythropenia with decreased hematocrit and hemoglobin levels as well as impaired erythroid differentiation. Thus, inappropriately high IRP1 activity causes disturbed body iron distribution and erythropoiesis. This new mouse model further highlights the importance of appropriate IRP regulation in central organs of iron metabolism. Moreover, it opens novel avenues to study diseases associated with abnormally high IRP1 activity, such as Parkinson’s disease or Friedreich’s ataxia.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23455710</pmid><doi>10.1007/s00109-013-1008-2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2716 |
ispartof | Journal of molecular medicine (Berlin, Germany), 2013-07, Vol.91 (7), p.871-881 |
issn | 0946-2716 1432-1440 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695688 |
source | MEDLINE; SpringerLink Journals |
subjects | Anemia, Macrocytic - metabolism Animals Biomedical and Life Sciences Biomedicine Duodenum - metabolism Erythropoiesis - physiology Female Human Genetics Internal Medicine Iron - metabolism Iron Regulatory Protein 1 - genetics Iron Regulatory Protein 1 - metabolism Iron-Regulatory Proteins - metabolism Liver - metabolism Male Mice Mice, Transgenic Molecular Medicine Original Original Article Spleen - metabolism |
title | Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormal%20body%20iron%20distribution%20and%20erythropoiesis%20in%20a%20novel%20mouse%20model%20with%20inducible%20gain%20of%20iron%20regulatory%20protein%20(IRP)-1%20function&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=Casarrubea,%20D.&rft.date=2013-07-01&rft.volume=91&rft.issue=7&rft.spage=871&rft.epage=881&rft.pages=871-881&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-013-1008-2&rft_dat=%3Cproquest_pubme%3E1373437366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372177184&rft_id=info:pmid/23455710&rfr_iscdi=true |