Differential regulation by ppGpp versus pppGpp in Escherichia coli

Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2013-07, Vol.41 (12), p.6175-6189
Hauptverfasser: Mechold, Undine, Potrykus, Katarzyna, Murphy, Helen, Murakami, Katsuhiko S, Cashel, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6189
container_issue 12
container_start_page 6175
container_title Nucleic acids research
container_volume 41
creator Mechold, Undine
Potrykus, Katarzyna
Murphy, Helen
Murakami, Katsuhiko S
Cashel, Michael
description Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits.
doi_str_mv 10.1093/nar/gkt302
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1373439732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</originalsourceid><addsrcrecordid>eNpdkclOwzAQhi0EgrJceACUI0IK9RInzgWplLJIlbjA2bKdcWtIk2Anlfr2GAoIOI1G880_y4_QKcGXBJds3Cg_Xrz2DNMdNCIsp2lW5nQXjTDDPCU4EwfoMIQXjElGeLaPDmiEMC35CF3fOGvBQ9M7VSceFkOtetc2id4kXXfXdckafBhCTD4z1ySzYJbgnVk6lZi2dsdoz6o6wMlXPELPt7On6X06f7x7mE7mqckE7dPCikpbAdgyDJwLlvFKcatzrCtBAQjPeS50BZoYoRVVQkBuS1Epo7M88kfoaqvbDXoFlYk7e1XLzruV8hvZKif_Vhq3lIt2LVleck6KKJBuBZb_2u4nc9mp0MPgZfwRLTgr1iTy518Dffs2QOjlygUDda0aaIcgCStYxsqC0YhebFHj2xA82B99guWHSTKaJLcmRfjs9yE_6Lcr7B1hUo-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1373439732</pqid></control><display><type>article</type><title>Differential regulation by ppGpp versus pppGpp in Escherichia coli</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mechold, Undine ; Potrykus, Katarzyna ; Murphy, Helen ; Murakami, Katsuhiko S ; Cashel, Michael</creator><creatorcontrib>Mechold, Undine ; Potrykus, Katarzyna ; Murphy, Helen ; Murakami, Katsuhiko S ; Cashel, Michael</creatorcontrib><description>Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt302</identifier><identifier>PMID: 23620295</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arabinose ; Arabinose - pharmacology ; Bacterial Proteins ; Bacterial Proteins - metabolism ; Binding Sites ; DNA-Directed RNA Polymerases ; DNA-Directed RNA Polymerases - chemistry ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Guanosine Pentaphosphate ; Guanosine Pentaphosphate - biosynthesis ; Guanosine Pentaphosphate - chemistry ; Guanosine Pentaphosphate - metabolism ; Guanosine Tetraphosphate ; Guanosine Tetraphosphate - biosynthesis ; Guanosine Tetraphosphate - chemistry ; Guanosine Tetraphosphate - metabolism ; Hydrolases ; Hydrolases - metabolism ; Life Sciences ; Ligases ; Ligases - metabolism ; Molecular Biology ; Operon ; Promoter Regions, Genetic ; RNA, Bacterial ; RNA, Bacterial - biosynthesis ; RNA, Ribosomal ; RNA, Ribosomal - genetics ; Sigma Factor ; Sigma Factor - chemistry ; Sigma Factor - metabolism ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2013-07, Vol.41 (12), p.6175-6189</ispartof><rights>Attribution - NonCommercial</rights><rights>Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</citedby><cites>FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</cites><orcidid>0000-0002-6019-0972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695517/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695517/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23620295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-01427537$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mechold, Undine</creatorcontrib><creatorcontrib>Potrykus, Katarzyna</creatorcontrib><creatorcontrib>Murphy, Helen</creatorcontrib><creatorcontrib>Murakami, Katsuhiko S</creatorcontrib><creatorcontrib>Cashel, Michael</creatorcontrib><title>Differential regulation by ppGpp versus pppGpp in Escherichia coli</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits.</description><subject>Arabinose</subject><subject>Arabinose - pharmacology</subject><subject>Bacterial Proteins</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>DNA-Directed RNA Polymerases</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Guanosine Pentaphosphate</subject><subject>Guanosine Pentaphosphate - biosynthesis</subject><subject>Guanosine Pentaphosphate - chemistry</subject><subject>Guanosine Pentaphosphate - metabolism</subject><subject>Guanosine Tetraphosphate</subject><subject>Guanosine Tetraphosphate - biosynthesis</subject><subject>Guanosine Tetraphosphate - chemistry</subject><subject>Guanosine Tetraphosphate - metabolism</subject><subject>Hydrolases</subject><subject>Hydrolases - metabolism</subject><subject>Life Sciences</subject><subject>Ligases</subject><subject>Ligases - metabolism</subject><subject>Molecular Biology</subject><subject>Operon</subject><subject>Promoter Regions, Genetic</subject><subject>RNA, Bacterial</subject><subject>RNA, Bacterial - biosynthesis</subject><subject>RNA, Ribosomal</subject><subject>RNA, Ribosomal - genetics</subject><subject>Sigma Factor</subject><subject>Sigma Factor - chemistry</subject><subject>Sigma Factor - metabolism</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkclOwzAQhi0EgrJceACUI0IK9RInzgWplLJIlbjA2bKdcWtIk2Anlfr2GAoIOI1G880_y4_QKcGXBJds3Cg_Xrz2DNMdNCIsp2lW5nQXjTDDPCU4EwfoMIQXjElGeLaPDmiEMC35CF3fOGvBQ9M7VSceFkOtetc2id4kXXfXdckafBhCTD4z1ySzYJbgnVk6lZi2dsdoz6o6wMlXPELPt7On6X06f7x7mE7mqckE7dPCikpbAdgyDJwLlvFKcatzrCtBAQjPeS50BZoYoRVVQkBuS1Epo7M88kfoaqvbDXoFlYk7e1XLzruV8hvZKif_Vhq3lIt2LVleck6KKJBuBZb_2u4nc9mp0MPgZfwRLTgr1iTy518Dffs2QOjlygUDda0aaIcgCStYxsqC0YhebFHj2xA82B99guWHSTKaJLcmRfjs9yE_6Lcr7B1hUo-8</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Mechold, Undine</creator><creator>Potrykus, Katarzyna</creator><creator>Murphy, Helen</creator><creator>Murakami, Katsuhiko S</creator><creator>Cashel, Michael</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6019-0972</orcidid></search><sort><creationdate>20130701</creationdate><title>Differential regulation by ppGpp versus pppGpp in Escherichia coli</title><author>Mechold, Undine ; Potrykus, Katarzyna ; Murphy, Helen ; Murakami, Katsuhiko S ; Cashel, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arabinose</topic><topic>Arabinose - pharmacology</topic><topic>Bacterial Proteins</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>DNA-Directed RNA Polymerases</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Guanosine Pentaphosphate</topic><topic>Guanosine Pentaphosphate - biosynthesis</topic><topic>Guanosine Pentaphosphate - chemistry</topic><topic>Guanosine Pentaphosphate - metabolism</topic><topic>Guanosine Tetraphosphate</topic><topic>Guanosine Tetraphosphate - biosynthesis</topic><topic>Guanosine Tetraphosphate - chemistry</topic><topic>Guanosine Tetraphosphate - metabolism</topic><topic>Hydrolases</topic><topic>Hydrolases - metabolism</topic><topic>Life Sciences</topic><topic>Ligases</topic><topic>Ligases - metabolism</topic><topic>Molecular Biology</topic><topic>Operon</topic><topic>Promoter Regions, Genetic</topic><topic>RNA, Bacterial</topic><topic>RNA, Bacterial - biosynthesis</topic><topic>RNA, Ribosomal</topic><topic>RNA, Ribosomal - genetics</topic><topic>Sigma Factor</topic><topic>Sigma Factor - chemistry</topic><topic>Sigma Factor - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mechold, Undine</creatorcontrib><creatorcontrib>Potrykus, Katarzyna</creatorcontrib><creatorcontrib>Murphy, Helen</creatorcontrib><creatorcontrib>Murakami, Katsuhiko S</creatorcontrib><creatorcontrib>Cashel, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mechold, Undine</au><au>Potrykus, Katarzyna</au><au>Murphy, Helen</au><au>Murakami, Katsuhiko S</au><au>Cashel, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation by ppGpp versus pppGpp in Escherichia coli</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>41</volume><issue>12</issue><spage>6175</spage><epage>6189</epage><pages>6175-6189</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23620295</pmid><doi>10.1093/nar/gkt302</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6019-0972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2013-07, Vol.41 (12), p.6175-6189
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695517
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Arabinose
Arabinose - pharmacology
Bacterial Proteins
Bacterial Proteins - metabolism
Binding Sites
DNA-Directed RNA Polymerases
DNA-Directed RNA Polymerases - chemistry
Escherichia coli
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - metabolism
Guanosine Pentaphosphate
Guanosine Pentaphosphate - biosynthesis
Guanosine Pentaphosphate - chemistry
Guanosine Pentaphosphate - metabolism
Guanosine Tetraphosphate
Guanosine Tetraphosphate - biosynthesis
Guanosine Tetraphosphate - chemistry
Guanosine Tetraphosphate - metabolism
Hydrolases
Hydrolases - metabolism
Life Sciences
Ligases
Ligases - metabolism
Molecular Biology
Operon
Promoter Regions, Genetic
RNA, Bacterial
RNA, Bacterial - biosynthesis
RNA, Ribosomal
RNA, Ribosomal - genetics
Sigma Factor
Sigma Factor - chemistry
Sigma Factor - metabolism
Substrate Specificity
title Differential regulation by ppGpp versus pppGpp in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20by%20ppGpp%20versus%20pppGpp%20in%20Escherichia%20coli&rft.jtitle=Nucleic%20acids%20research&rft.au=Mechold,%20Undine&rft.date=2013-07-01&rft.volume=41&rft.issue=12&rft.spage=6175&rft.epage=6189&rft.pages=6175-6189&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt302&rft_dat=%3Cproquest_pubme%3E1373439732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1373439732&rft_id=info:pmid/23620295&rfr_iscdi=true