Differential regulation by ppGpp versus pppGpp in Escherichia coli
Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2013-07, Vol.41 (12), p.6175-6189 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6189 |
---|---|
container_issue | 12 |
container_start_page | 6175 |
container_title | Nucleic acids research |
container_volume | 41 |
creator | Mechold, Undine Potrykus, Katarzyna Murphy, Helen Murakami, Katsuhiko S Cashel, Michael |
description | Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits. |
doi_str_mv | 10.1093/nar/gkt302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1373439732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</originalsourceid><addsrcrecordid>eNpdkclOwzAQhi0EgrJceACUI0IK9RInzgWplLJIlbjA2bKdcWtIk2Anlfr2GAoIOI1G880_y4_QKcGXBJds3Cg_Xrz2DNMdNCIsp2lW5nQXjTDDPCU4EwfoMIQXjElGeLaPDmiEMC35CF3fOGvBQ9M7VSceFkOtetc2id4kXXfXdckafBhCTD4z1ySzYJbgnVk6lZi2dsdoz6o6wMlXPELPt7On6X06f7x7mE7mqckE7dPCikpbAdgyDJwLlvFKcatzrCtBAQjPeS50BZoYoRVVQkBuS1Epo7M88kfoaqvbDXoFlYk7e1XLzruV8hvZKif_Vhq3lIt2LVleck6KKJBuBZb_2u4nc9mp0MPgZfwRLTgr1iTy518Dffs2QOjlygUDda0aaIcgCStYxsqC0YhebFHj2xA82B99guWHSTKaJLcmRfjs9yE_6Lcr7B1hUo-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1373439732</pqid></control><display><type>article</type><title>Differential regulation by ppGpp versus pppGpp in Escherichia coli</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mechold, Undine ; Potrykus, Katarzyna ; Murphy, Helen ; Murakami, Katsuhiko S ; Cashel, Michael</creator><creatorcontrib>Mechold, Undine ; Potrykus, Katarzyna ; Murphy, Helen ; Murakami, Katsuhiko S ; Cashel, Michael</creatorcontrib><description>Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt302</identifier><identifier>PMID: 23620295</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arabinose ; Arabinose - pharmacology ; Bacterial Proteins ; Bacterial Proteins - metabolism ; Binding Sites ; DNA-Directed RNA Polymerases ; DNA-Directed RNA Polymerases - chemistry ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; Guanosine Pentaphosphate ; Guanosine Pentaphosphate - biosynthesis ; Guanosine Pentaphosphate - chemistry ; Guanosine Pentaphosphate - metabolism ; Guanosine Tetraphosphate ; Guanosine Tetraphosphate - biosynthesis ; Guanosine Tetraphosphate - chemistry ; Guanosine Tetraphosphate - metabolism ; Hydrolases ; Hydrolases - metabolism ; Life Sciences ; Ligases ; Ligases - metabolism ; Molecular Biology ; Operon ; Promoter Regions, Genetic ; RNA, Bacterial ; RNA, Bacterial - biosynthesis ; RNA, Ribosomal ; RNA, Ribosomal - genetics ; Sigma Factor ; Sigma Factor - chemistry ; Sigma Factor - metabolism ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2013-07, Vol.41 (12), p.6175-6189</ispartof><rights>Attribution - NonCommercial</rights><rights>Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</citedby><cites>FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</cites><orcidid>0000-0002-6019-0972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695517/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695517/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23620295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-01427537$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mechold, Undine</creatorcontrib><creatorcontrib>Potrykus, Katarzyna</creatorcontrib><creatorcontrib>Murphy, Helen</creatorcontrib><creatorcontrib>Murakami, Katsuhiko S</creatorcontrib><creatorcontrib>Cashel, Michael</creatorcontrib><title>Differential regulation by ppGpp versus pppGpp in Escherichia coli</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits.</description><subject>Arabinose</subject><subject>Arabinose - pharmacology</subject><subject>Bacterial Proteins</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>DNA-Directed RNA Polymerases</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>Guanosine Pentaphosphate</subject><subject>Guanosine Pentaphosphate - biosynthesis</subject><subject>Guanosine Pentaphosphate - chemistry</subject><subject>Guanosine Pentaphosphate - metabolism</subject><subject>Guanosine Tetraphosphate</subject><subject>Guanosine Tetraphosphate - biosynthesis</subject><subject>Guanosine Tetraphosphate - chemistry</subject><subject>Guanosine Tetraphosphate - metabolism</subject><subject>Hydrolases</subject><subject>Hydrolases - metabolism</subject><subject>Life Sciences</subject><subject>Ligases</subject><subject>Ligases - metabolism</subject><subject>Molecular Biology</subject><subject>Operon</subject><subject>Promoter Regions, Genetic</subject><subject>RNA, Bacterial</subject><subject>RNA, Bacterial - biosynthesis</subject><subject>RNA, Ribosomal</subject><subject>RNA, Ribosomal - genetics</subject><subject>Sigma Factor</subject><subject>Sigma Factor - chemistry</subject><subject>Sigma Factor - metabolism</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkclOwzAQhi0EgrJceACUI0IK9RInzgWplLJIlbjA2bKdcWtIk2Anlfr2GAoIOI1G880_y4_QKcGXBJds3Cg_Xrz2DNMdNCIsp2lW5nQXjTDDPCU4EwfoMIQXjElGeLaPDmiEMC35CF3fOGvBQ9M7VSceFkOtetc2id4kXXfXdckafBhCTD4z1ySzYJbgnVk6lZi2dsdoz6o6wMlXPELPt7On6X06f7x7mE7mqckE7dPCikpbAdgyDJwLlvFKcatzrCtBAQjPeS50BZoYoRVVQkBuS1Epo7M88kfoaqvbDXoFlYk7e1XLzruV8hvZKif_Vhq3lIt2LVleck6KKJBuBZb_2u4nc9mp0MPgZfwRLTgr1iTy518Dffs2QOjlygUDda0aaIcgCStYxsqC0YhebFHj2xA82B99guWHSTKaJLcmRfjs9yE_6Lcr7B1hUo-8</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Mechold, Undine</creator><creator>Potrykus, Katarzyna</creator><creator>Murphy, Helen</creator><creator>Murakami, Katsuhiko S</creator><creator>Cashel, Michael</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6019-0972</orcidid></search><sort><creationdate>20130701</creationdate><title>Differential regulation by ppGpp versus pppGpp in Escherichia coli</title><author>Mechold, Undine ; Potrykus, Katarzyna ; Murphy, Helen ; Murakami, Katsuhiko S ; Cashel, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-7f8dbf8e0f30e558345da5fb60bd82ee156568bdeb1c8ba2a88e6f98dacb46583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arabinose</topic><topic>Arabinose - pharmacology</topic><topic>Bacterial Proteins</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>DNA-Directed RNA Polymerases</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>Guanosine Pentaphosphate</topic><topic>Guanosine Pentaphosphate - biosynthesis</topic><topic>Guanosine Pentaphosphate - chemistry</topic><topic>Guanosine Pentaphosphate - metabolism</topic><topic>Guanosine Tetraphosphate</topic><topic>Guanosine Tetraphosphate - biosynthesis</topic><topic>Guanosine Tetraphosphate - chemistry</topic><topic>Guanosine Tetraphosphate - metabolism</topic><topic>Hydrolases</topic><topic>Hydrolases - metabolism</topic><topic>Life Sciences</topic><topic>Ligases</topic><topic>Ligases - metabolism</topic><topic>Molecular Biology</topic><topic>Operon</topic><topic>Promoter Regions, Genetic</topic><topic>RNA, Bacterial</topic><topic>RNA, Bacterial - biosynthesis</topic><topic>RNA, Ribosomal</topic><topic>RNA, Ribosomal - genetics</topic><topic>Sigma Factor</topic><topic>Sigma Factor - chemistry</topic><topic>Sigma Factor - metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mechold, Undine</creatorcontrib><creatorcontrib>Potrykus, Katarzyna</creatorcontrib><creatorcontrib>Murphy, Helen</creatorcontrib><creatorcontrib>Murakami, Katsuhiko S</creatorcontrib><creatorcontrib>Cashel, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mechold, Undine</au><au>Potrykus, Katarzyna</au><au>Murphy, Helen</au><au>Murakami, Katsuhiko S</au><au>Cashel, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation by ppGpp versus pppGpp in Escherichia coli</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>41</volume><issue>12</issue><spage>6175</spage><epage>6189</epage><pages>6175-6189</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between β' and ω subunits.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23620295</pmid><doi>10.1093/nar/gkt302</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6019-0972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2013-07, Vol.41 (12), p.6175-6189 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3695517 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Arabinose Arabinose - pharmacology Bacterial Proteins Bacterial Proteins - metabolism Binding Sites DNA-Directed RNA Polymerases DNA-Directed RNA Polymerases - chemistry Escherichia coli Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli - metabolism Guanosine Pentaphosphate Guanosine Pentaphosphate - biosynthesis Guanosine Pentaphosphate - chemistry Guanosine Pentaphosphate - metabolism Guanosine Tetraphosphate Guanosine Tetraphosphate - biosynthesis Guanosine Tetraphosphate - chemistry Guanosine Tetraphosphate - metabolism Hydrolases Hydrolases - metabolism Life Sciences Ligases Ligases - metabolism Molecular Biology Operon Promoter Regions, Genetic RNA, Bacterial RNA, Bacterial - biosynthesis RNA, Ribosomal RNA, Ribosomal - genetics Sigma Factor Sigma Factor - chemistry Sigma Factor - metabolism Substrate Specificity |
title | Differential regulation by ppGpp versus pppGpp in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20by%20ppGpp%20versus%20pppGpp%20in%20Escherichia%20coli&rft.jtitle=Nucleic%20acids%20research&rft.au=Mechold,%20Undine&rft.date=2013-07-01&rft.volume=41&rft.issue=12&rft.spage=6175&rft.epage=6189&rft.pages=6175-6189&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt302&rft_dat=%3Cproquest_pubme%3E1373439732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1373439732&rft_id=info:pmid/23620295&rfr_iscdi=true |